期刊文献+

四孔径衍射屏在近场形成的光强分布及拓扑荷 被引量:4

Intensity Distribution and Topological Charge Generated by Four-Pinhole Aperture Diffraction Screens in Near-Field Region
原文传递
导出
摘要 利用基尔霍夫衍射理论计算模拟了四圆孔径衍射屏在菲涅耳深区形成的衍射光场的强度、零值线和相位的分布,发现衍射光场亮斑关于中心呈对称分布,在距离衍射屏较近的观察面上,光强值为零的点组成光强零值线段,该线段上光强等值线的离心率都接近或等于1,其两侧的光强值变化非常剧烈。复振幅的实部和虚部零值线多为封闭的曲线,零值线交叉点的个数为偶数,并且正负相位奇异点的个数相等。特殊相位奇异点周围的相位不仅呈对称分布,而且该点的拓扑荷的值近似为零。随着光波的传播,在不同的观察面上光强零值线段逐渐变短,最终趋于一点。 The Kirchhoff diffraction theory is applied to the four-pinhole aperture diffraction screen, so that the intensity, the zero contour of the real and imaginary parts of complex amplitude and the phase distribution in deep Fresnel diffraction region are simulated, and it is found that the bright spots in diffraction field show central symmetric distribution. When the observation plane closes to the diffraction screen, the zero-value points of light intensity can form line segment, on which the eccentricities of the light intensity isoline are close or equal to 1, and the intensity changes very fast on both sides of the zero line of light intensity. The zero contours of the real and imaginary parts of complex amplitude are closed curves. The number of intersection points of the zero contour is even, and positive and negative singularities are equal. Not only the phase around special phase singularities appears symmetric distribution, but also the topological charges of special phase singularities equals zero. With the propagation of the optical wave, the line segment of zero-value intensity changes to be shorter and shorter, finally to be a point.
作者 刘曼
出处 《光学学报》 EI CAS CSCD 北大核心 2012年第9期263-270,共8页 Acta Optica Sinica
基金 国家自然科学基金(10974122)资助课题
关键词 物理光学 成像系统 相干光学 衍射 physical optics imaging systems coherence optics diffraction
  • 相关文献

参考文献2

二级参考文献47

  • 1J. F. Ney, M. V. Berry. Dislocations in wave trains[J]. Proc. R. Soc. London Set. A, 1974, 336(1605): 165-190.
  • 2David G. Grier. A revolution in optical manipulation [J]. Nature, 2003, 424(6950) : 810-816.
  • 3T. Kuga, Y. T. N. Shiokawa, T. Hirano et al.. Novel optical trap of atoms with a doughnut beam[J]. Phys. Rev. Lett. , 1997,78(25) : 4713-4716.
  • 4Gregory Foo, David M. Palacios, Grover A. Swartzlander et al.. Optical vortex coronagraph[J]. Opt. Lett., 2005, 30(24):3308-3310.
  • 5Lianzhou Rao, Jixiong Pu. Generation of partially coherent vortex bottle beams [J]. Chin. Opt. Lett, , 2007, 5 (7): 379-382.
  • 6M. W. Beijersbergen, L. Alien, H. E. L. O. van der Veen et al.. Astigmatic laser mode converters and transfer of orbital angular momentum[J]. Opt. Commun, , 1993, 96 (1 - 3): 123-132.
  • 7G. A. Turnbull, D. A. Robertson, G. M. Smith et al.. The generation of free-space Lagerre-Gaussian modes at millimeter-wave frequencies by use of a spiral phaseplate [J]. Opt. Commun. , 1996, 127:183-188.
  • 8M. L. M. Balistreri, J. P. Korterik, L. Kuipers et al.. Local observations of phase singularities in optical fields in waveguide structures[J]. Phys. Rev. Lett., 2000, 85(2): 294-297.
  • 9Arlee V. Smith, Darrell J. Armstrong. Generation of vortex beams by an image-rotating optical parametric oscillator[J]. Opt. Express, 2003, 11(8) : 868-873.
  • 10R. Oron, N. Davidson, A. A. Friesem et al.. Efficient formation of pure helical laser beams[J]. Opt. Commun. , 2000, 182:205-208.

共引文献21

同被引文献53

  • 1PUJi-Xiong CAIChao.Anomalous Behaviour of the Spectra in Young's Double-Slit Interference Experiments[J].Chinese Physics Letters,2004,21(7):1268-1271. 被引量:4
  • 2胡现代,蒲继雄.Spectral anomalies of polychromatic, spatially coherent light diffracted by an annular aperture in the far field[J].Chinese Optics Letters,2005,3(7):418-421. 被引量:5
  • 3M. Babiker, V. E. l.embe.ssis, W. K. Lai el al.. Atom dynamics in multiple I.aguerre Gaussian beams [J]. Phys. Iev. A, 1996, 54(5): 4259-4270.
  • 4J. P. Yin, Y. F. Zhu, Y. Z. Wang. Evanescent light-wave atomic funnel: a landem hollow-fiber, hollow beam approach [J]. Ph.ys. Rev. A, 1998. 57(3): 1957--1966.
  • 5S. Inouye, S. (;ul)ta, T. Rosenband et al.. Observation of vortex phase singularities in Bose-Einstein condensates E J 1-l'hys. Re'v. Lett, , 2001, 87(8): 080402.
  • 6M. V. Berry, M. R. Dennis. Phase singularities in isotropic random waves[J]. PrJc. R. &Jc. I2)nd. A, 2000, 456(2001): 2059-2079.
  • 7N. R. Heckenberg, R. McDuff, C. P. Smith et al,, I.aser beams with phase singularities [J]. Opt. Quantum -:lectron., 1992, 24(9): S951-S962.
  • 8E. Abramochkin, V. Volostnikov. Spiral-type beams: optical and quantum aspects [J]. Opt. Cmmun. , 1996, 125 (4-6) 302-323.
  • 9G. A. Swartzlander Jr. , C. T. Law. Optical vortex solitons observed in Kerr nonlinear media [J]. Phys. Rev. Lett. , 1992, 69( 17): 2503-2506.
  • 10A.W. Snyder, L. Poladian, D. J. Michelh Stable black self- guided beams of circular symmetry in a bulk Kerr medium [J]. Opt. Lett., 1992, 17(11): 789-791.

引证文献4

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部