期刊文献+

用于异常检测的免疫实值检测器优化生成算法 被引量:3

Optimization algorithm for immune real-value detector generation
下载PDF
导出
摘要 针对已有实值可变半径检测器生成算法的不足,提出一种优化的检测器生成算法。通过对检测器生成过程的统计分析,给出了基于假设检验的检测器生成过程,并将假设检验的结果作为算法结束的一个控制参数,有效减少了冗余检测器的产生。同时,算法充分利用自体空间的分布,优化检测器生成的中心位置,扩大检测器的半径,尽可能生成覆盖范围大的检测器,提高检测性能。通过人工合成数据集2DSyntheticData以及实际的Iris数据集和Biomedical数据集对算法进行了验证。实验结果表明,本算法用于异常数据检测,提高了检测率,所需的检测器数量减少,整体检测性能较优。 A new optimized detector generation algorithm is proposed to overcome the shortcomings of available real-value variable-radius detector generation algorithms.By statistic analysis of the detector generation,a hypothesis testing based detector generation process is proposed.The result of the hypothesis testing is taken as one of the control parameters to end the algorithm,thus,it can effectively avoid the generation of redundant detectors.Meanwhile,the algorithm makes full use of the distribution of self-space,optimizes the center position and expands the radius of the detectors in order to generate the detector with large coverage.The 2DSyntheticData,the actual Irish data set and biomedical data set are used to test the algorithm.Experiment results show that the algorithm performs very well that it improves the detection rate,reduces the number of required detectors.
出处 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2012年第5期1251-1256,共6页 Journal of Jilin University:Engineering and Technology Edition
基金 '863'国家高技术研究发展计划项目(2009AA12Z210) 国家自然科学基金项目(61001202 61003199 61072139) 高等学校博士学科点专项科研基金项目(20090203120016 20100203120008)
关键词 计算机系统结构 假设检验 否定选择算法 检测器 异常检测 检测性能 computer systems organization hypothesis testing negative selection algorithm detector anomaly detection detection performance
  • 相关文献

参考文献15

  • 1柴争义,王献荣,王亮.用于异常检测的实值否定选择算法[J].吉林大学学报(工学版),2012,42(1):176-181. 被引量:12
  • 2Bereta M, Burczyrnski T. Comparing binary and real-valued coding in hybrid immune algorithm for feature selection and classification of ECG signals[J]. Engineering Applications of Artificial Intelligence, 2008,20(5): 571-585.
  • 3Gonzalez F, Dasgupta D, Nino L F. A randomized real-valued negative selection algorithm[C]//ICARIS 2003, Edinburgh, UK, 2007:376-383.
  • 4Zhang Feng-bin, Wang Da-wei, Wang Sheng-wen A self region based real-valued negative selection algorithm[J]. Journal of Harbin Institute of Technology, 2009,15(6) :851-855.
  • 5Zhou Ji, Dasgupta D. Real-valued negative selection algorithm with variable-sized detectors [C]//Proceedings of GECCO, LNCS 3102. Berlin:Springer, 2008 : 287-298.
  • 6Chmielewski A, Wierzcho S T. V-detector algorithm with tree-based structures [C] /// Proccedings of the International Conference on Computer Science and Information Technology. Wist:a, Poland, 2009: 9-14.
  • 7Jinquan Zeng,Xiaojie Liu,Tao Li,Caiming Liu,Lingxi Peng,Feixian Sun Department of Computer Science,Sichuan University,Chengdu 610065,China.A self-adaptive negative selection algorithm used for anomaly detection[J].Progress in Natural Science:Materials International,2009,19(2):261-266. 被引量:10
  • 8Wang Yu-jian, Luo Wen-jian. PTS-RNSA: A novel detector generation algorithm for real-valued negative selection algorithm [C]// 2010 International Joint Conference on Bioinformatics, Systems Biology and Intelligent Computing. USA,IEEE Press, 2010: 61-66.
  • 9Balachandran S, Dasgupta D, Nino L F, et al. A general framework for evolving multi-shaped detectors in negative selection [C] // Proc of the 2009 IEEE Symposium Series on Foundations of Computational Intelligence, FOCI-2008. Honolulu, Hawaii, 2009:401-408.
  • 10Zhou Ji, Dasgupta D. An efficient negative selection algorithm with probably adequate detector coverage [J]. Information Sciences, 2009,17(9):1390-1406.

二级参考文献19

  • 1李洁,高新波,焦李成.基于克隆算法的网络结构聚类新算法[J].电子学报,2004,32(7):1195-1199. 被引量:24
  • 2LI Tao.An immunity based network security risk estimation[J].Science in China(Series F),2005,48(5):557-578. 被引量:30
  • 3Bereta M,Burczy'nski T. Comparing binary and re- al-valued coding in hybrid immune algorithm for fea- ture selection and classification of ecg signals[J]. Eng Appl Artif Intell, 2007,20(5):571-585.
  • 4Gonzdlez F, Dasgupta D, Kozma R. Combining negative selection and classification techniques for a- nomaly detection[C]//Proceedings of the 2002 Con- gress on Evolutionary Computation CEC2002. USA:IEEE Press,2002:705-710.
  • 5Gonzdlez F A,Dasgupta D. Anomaly detection using real-valued negative selection[J]. Journal of Genetic Programming and Evolvable Machines, 2003,4 (4) : 383-403.
  • 6Gonzdlez F, Dasgupta D, Nifio L F. A randomized rea-valued negative selection algorithm[J]. Lecture Notes in Computer Science,2003,2787:261-272.
  • 7Zhou Ji, Dasgupta D. Real valued negative selection algorithm with variable-sized detectors [C]//Pro- ceedings of GECCO. Berlin: Springer, 2005: 287- 298.
  • 8Zhou Ji. A boundary-aware negative selection algorithm [C] // IASTED International Conference on Artificial Intelligence and Soft Computing (ASC), Benidorm, Spain, 2006:45-50.
  • 9Zhou Ji, Dasgupta D. V-Detector: an efficient nega- tive selection algorithm with "probably adequate" detector coverage[J]. Information Sciences, 2009,17 (9) :1390-1406.
  • 10Columbia University. 2D Synthetic Data[EB/OL]. [-2010-3-12 ]. http: // www. zhouji, net/prof/ 2DSyntheticData. zip.

共引文献60

同被引文献16

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部