期刊文献+

时频降噪在图像序列事件检测中的应用 被引量:2

Temporal-frequency denoising application in event detection base on image sequences
下载PDF
导出
摘要 针对图像序列分析中事件检测在强背景噪声的野外应用场景下经常出现'假事件'检测的问题,利用Kalman滤波器与二维DCT滤波思想,提出了基于图像序列时频降噪的事件检测方法。该方法基于Kalman滤波器对图像序列进行背景模型的时域多帧降噪,并结合变化前景区域实现背景模型的自适应重构,对单帧前景图像应用二维DCT变换实现低通降噪,最后由自适应分割方法实现事件前景的分割。通过对实际采集的野外图像序列的仿真分析表明,该方法较好地克服了'假事件'检测的问题,并更好地保持了真实事件信息,其F-measure达0.9423,具有很好的实用性与鲁棒性。 To solve the "false event" detection problem in image sequence analysis in the wild situation with strong background noises,an event detection method based on temporal-frequency denoising is proposed utilizing Kalman filter theory and 2D Discrete Cosine Transform(DCT) theory.The method utilizes Kalman filter to denoise the background model of image sequence with several frames in time domain.The background model is reconstructed adaptively based on variational foreground region.Then,the foreground image of a single frame is denoised utilizing 2D DCT transform.Finally,the event foreground is segmented by adaptive segmentation method.Based on the results of simulation analysis of image sequences collected in wild situation,the proposed method is proved to detect the event foreground and solve the "false event" detection problem effectively and practically,while its F-measure can achieve 0.9423.
出处 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2012年第5期1273-1279,共7页 Journal of Jilin University:Engineering and Technology Edition
基金 江苏省自然科学基金项目(BK2011035) 国家科技重大专项项目(2010ZX03006-004) “973”国家重点基础研究发展规划项目(2011CB302906)
关键词 计算机应用 事件检测 KALMAN滤波器 二维DCT变换 computer application event detection kalman filter 2D DCT
  • 相关文献

参考文献19

  • 1Maybank S,Tan T. Introduction-special section on visual surveillance[J]. International Journal of Computer Vision,2000,37 (2) :173.
  • 2Haritaoglu I, Harwood D, Davis L W. Real-time surveillance of people and their activities[J]. IEEE Trans Pattern Analysis and Machine Intelligence, 2000, 22 (8): 809-830.
  • 3宫晓燕,汤淑明.基于非参数回归的短时交通流量预测与事件检测综合算法[J].中国公路学报,2003,16(1):82-86. 被引量:91
  • 4王亮,胡卫明,谭铁牛.人运动的视觉分析综述[J].计算机学报,2002,25(3):225-237. 被引量:276
  • 5郝志成,朱明,刘微.复杂背景下目标的快速提取与跟踪[J].吉林大学学报(工学版),2006,36(2):259-263. 被引量:15
  • 6李志慧,张长海,曲昭伟,王殿海.交通流视频检测中背景模型与阴影检测算法[J].吉林大学学报(工学版),2006,36(6):993-997. 被引量:16
  • 7Stauffer C, Grimson W. Adaptive background mixture models for real-time tracking[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 1999(2): 246-252.
  • 8Karmann Klaus-Peter, Achim von Brandt. Moving object recognition using an adaptive background memory[J]. Time-varying Image Processing and Moving Object Recognition, 2, V Cappellini (ed.), Elsevier Publishers B V, Amsterdam, The Netherlands, 1990:297-307.
  • 9Kilger M. A shadow handler in a video-based realtime traffic monitoring system[C]//Proceedings of IEEE Workshop on Applications of Computer Vision, 1992: 1060-1066.
  • 10Elgammal A, Harwood D, Davis L. Non-parametric model for background subtraction[C]//Proceedings of the 6th European Conference on Computer Vision, 2000: 751-767.

二级参考文献151

  • 1张恒.基于大数据背景下的计算机网络信息安全问题分析[J].明日,2017,0(42):0058-0058. 被引量:2
  • 2张天序,戴可荣,彭嘉雄.复杂图象序列的自适应目标提取和跟踪方法[J].电子学报,1994,22(10):46-53. 被引量:15
  • 3张桂林,张天序,魏洛刚,谢先明.基于边缘特征的运动目标提取与跟踪[J].华中理工大学学报,1994,22(5):42-45. 被引量:12
  • 4Lu W, Tan Y P. A color histogram based people tracking system [ A]. In: Proceeding of the 2001 IEEE international Symposium on Circuits and Systems [ C ], Sydney, Australia, 2001,2 : 137-140.
  • 5Stauffr C, Grimson W. Adaptive background mixture models for real- time tracking [ A ]. In: Proceeding of Computer Vision and Pattern Recognition[ C ] , Ft. Collins, CO, USA, 1999, 2:246-252.
  • 6Zivkovic Z, Heijden F V. Efficient adaptive density estimation per image pixel for the task of background subtraction [ J ]. Pattern Recognition Letters, 2006, 27 (7) : 773- 780.
  • 7Wren C, Azarbayejani A, Darrell T,et al. Pfinder: Real-time tracking of the human body [ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19 (7) :780-785.
  • 8Bouh T E, Micheals R J, Gao X, et al. Into the woods: Visual surveillance of non-cooperative and camouflaged targets in complex outdoor settings [ J]. Proceedings of the IEEE, 2001, 89 (10) : 1382-1402.
  • 9Buxton B. Early Image Processing Structural Techniques Motivated by Human Visual Response [ D]. Guildford, Surrey, UK: University of Surrey, 1984.
  • 10[25]Kohle M, Merkl D, Kastner J. Clinical gait analysis by neural networks: Issues and experiences. In: Proc IEEE Symposium on Computer-Based Medical Systems, Maribor, Slovenia, 1997. 138-143

共引文献444

同被引文献15

引证文献2

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部