期刊文献+

分数次积分算子交换子在Morrey空间上的有界性特征 被引量:5

A characterization of the boundedness for the commutator of fractional integral on Morrey space
原文传递
导出
摘要 本文证明了:如果分数次积分算子交换子[b,TΩ,α]从Morrey空间Lp,λ(Rn)到Lq,λ(Rn)(1<p,q<∞,1/q=1/p-α/(n-λ))有界,则b∈BMO(Rn).这个结果改进并推广了前人的结果. Abstract In this paper, [b,TΩ,α] is the commutator oi iractional integral withe the kernel function Ω on the unit sphere. The authors give a characterization of BMO space by studying the boundedness of [b,TΩ,α] from the Morrey spaces Lp,λ(Rn) to Lq,λ(Rn) when p 〉 1 and 1/q = 1/p - α/(n-λ). The results in this paper improve and extend some known conclusions.
出处 《中国科学:数学》 CSCD 北大核心 2012年第9期879-886,共8页 Scientia Sinica:Mathematica
基金 国家自然科学基金(批准号:10901017 10931001和11161044) 高等学校博士学科点专项科研基金(批准号:20090003110018) 教育部博士点专项基金(批准号:20050027025) 教育部新世纪人才支持计划(批准号:NCET-11-0574) 中央高校基本科研业务费 新疆自然科学基金(批准号:2011211A005) 新疆大学博士启动基金(批准号:BS090104)资助项目
关键词 分数次积分算子 交换子 BMO空间 MORREY空间 fractional integrals, commutators, B]VIO, Morrey space
  • 相关文献

参考文献10

  • 1Muckenhoupt B, Wheeden R. Weighted norm inequalities for singular and fractional integrals. Trans Amer Math Soc, 1971, 161: 249-258.
  • 2Ding Y. Weak type bounds for a class of rough operators with power weightes. Proc Amer Math Soc, 1997, 125: 2939-2942.
  • 3Ding Y, Lu S. Highter order commutators for a class of rough operators. Ark Mat, 1999, 37: 33-44.
  • 4Chanillo S. A note on commutators. Indiana Univ Math J, 1982,31: 7-16.
  • 5Janson S. Mean oscillation and commutators of singular integral operators. Ark Mat, 1978, 16: 263-270.
  • 6Ding Y. A characterization of BMO via commutators for some operators. Northeast Math J, 1997, 13: 422-432.
  • 7Chen Y, Ding Y. Commutators of parabolic singular integrals on the generalized Morrey spaces. Acta Math Appl Sin-Engl Ser, in press.
  • 8Mizuhara T. Commutators of singular integral operators on Morrey spaces with general growth functions. In: Proceed?ings of the Coference on Harmonic Analysis and Nonlinear Partial Differential Equations. Kyoto: Stirikaisekikenkyusho Kokyiiroku, 1999, 1102: 49-63.
  • 9Ding Y. A note on end properties of Marcinkiewicz integral. J Korean Math Soc, 2005, 42: 1087-1100.
  • 10Stein E M. Singular Integrals and Differentiability Properties of Functions. Princeton: Princeton University Press, 1970.

同被引文献27

引证文献5

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部