期刊文献+

齐次群上带漂移项亚椭圆算子的整体Sobolev-Morrey估计 被引量:1

Global Sobolev-Morrey estimates for hypoelliptic operators with drift on homogeneous groups
原文传递
导出
摘要 设G是一个齐次群,X0,X1,X2,...,Xp0为G上满足Ho¨rmander秩条件的实左不变向量场且X1,X2,...,Xp0是1次齐次的,X0是2次齐次的.在本文中,我们研究如下带有漂移项的算子:L=∑p0i,j=1aijXiXj+a0X0,其中(aij)是一个常数矩阵且满足椭圆条件,a0∈R\{0}.对算子L,通过建立齐型空间上的奇异积分Morrey有界性和关于此向量场的插值不等式,我们在群G上获得了整体Sobolev-Morrey估计. Abstract Let G be a homogeneous group and X0, X1, X2,..., Xpo be left invariant real vector fields on G satisfying the HSrmander's rank condition. Assume that X1, X2,..., Xpo are homogeneous of degree one and X0 is homogeneous of degree two. In this paper, we study the following hypoelliptic operator with drift: L=∑p0i,j=1aijXiXj+a0X0 where (aij) is a constant matrie satisfying the uniform ellipticity condition and a0 is a constant away from zero, and obtain the global Sobolev-Morrey estimates on G by establishing the Morrey boundedness of the singular integrals on homogeneous spaces and interpolation inequalities depending on vector fields.
出处 《中国科学:数学》 CSCD 北大核心 2012年第9期905-920,共16页 Scientia Sinica:Mathematica
基金 国家自然科学基金(批准号:10871157和11001221) 高等学校博士学科点专项科研基金(批准号:200806990032) 西北工业大学基础研究基金探索项目(批准号:JC201124)资助项目
关键词 Sobolev-Morrey估计 齐次群 向量场 Sobolev-Morrey estimates, homogeneous group, vector fields
  • 相关文献

二级参考文献48

  • 1褚玉明,刘宪高.带位势的调和映射的正则性[J].中国科学(A辑),2006,36(2):179-191. 被引量:1
  • 2陈淑红,谭忠.p-调和逼近方法和可控增长条件下能量极小p-调和映射的最优内部正则性[J].中国科学(A辑),2006,36(11):1302-1312. 被引量:3
  • 3Gilbarg D, Trudinger N S. Elliptic Partial Differential Equations of Second Order, 2nd ed. Berlin: Springer-Verlag, 1983, 188-202.
  • 4Fabes E, Kenig C, Serapioni R. The local regularity of solutions of degenerate elliptic equations. Comm Partial Differential Equations, 1982, 7:77-116.
  • 5Gutierrez C E. Harnack's inequality for degenerate Schr6dinger operators. Trans Amer Math Soc, 1989, 312:403-419.
  • 6Vitanza C, Zamboni P. Necessary and sufficient conditions for H6lder continuity of solutions of degenerate Schrodinger operators. Le Matematiche, 1997, 52:393-409.
  • 7De Cicco V, Vivaldi M A. Harnack inequalities for Fuchsian type weighted elliptic equations. Comm Partial Differential Equations, 1996, 21:1321- 1347.
  • 8Zamboni P. Holder continuity for solutions of linear degenerate elliptic equations under minimal assumptions. 3 Partial Differential Equations, 2002, 182:121-140.
  • 9Chanillo S, Wheeden R L. Harnack's inequality and mean-value inequalities for solutions of degenerate elliptic equations. Comm Partial Differential Equations, 1986, 11:1111-1134.
  • 10Pingen M. Regularity results for degenerate elliptic systems. Ann Inst H Poincare Anal Non Lineaire, 2008, 25:369-380.

共引文献17

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部