期刊文献+

模糊互补问题均衡解的存在性 被引量:1

Existence of equilibrium solution for fuzzy linear complementarity problem
下载PDF
导出
摘要 为研究模糊线性互补问题均衡解的存在性,在引入模糊R_0矩阵概念的基础上,给出了模糊R_0矩阵的等价性条件,在此基础上研究了模糊R_0矩阵的性质,给出了由任一R_0矩阵和零模糊矩阵构造模糊R_0矩阵和由一般的非R_0矩阵构造模糊R_0矩阵的方法. For investigating the existence of equilibrium solution for the problem of fuzzy linear complementarity, a concept of fuzzy R0 matrix is presented, some equivalent conditions for a fuzzy R0 matrix are obtained. The properties of a fuzzy Ro matrix are studied, and the method is presented to construct a fuzzy R0 matrix either from an arbitrary R0 matrix and a zero-fuzzy matrix, or from a non-R0 matrix and a fuzzy matrix.
出处 《高校应用数学学报(A辑)》 CSCD 北大核心 2012年第2期220-227,共8页 Applied Mathematics A Journal of Chinese Universities(Ser.A)
基金 国家自然科学基金(71071162 70921001)
关键词 模糊R_0矩阵 模糊互补问题 模糊可能性 残差极小 fuzzy R0 matrix complementarity problem fuzzy possibility residual minimization
  • 相关文献

参考文献18

  • 1Cottle R W, Pang J S, Stone R E. The Linear Complementarity Problem[M]. New York: Academic Press, 1992.
  • 2Facchinei F, Pang J S. Finite-Dimensional Variational Inequalities and Complementarity Problems, Ⅰ and Ⅱ[M]. New York: Springer-Verlag, 2003.
  • 3Yin Hongxia, Ding Fei, Zhang Jianzhong. Active set algorithm for mathematical programs with linear complementarity constraints[J]. Applied Mathematics and Computation, 2011, 217(21): 8291-8302.
  • 4Chen Xiaojun, Fukusima Masao. Expected residual minimization method for stochastic linear complementarity problems[J]. Mathematics of Operations Research, 2005, 30(4): 1022- 1038.
  • 5Fang Haitao, Chen Xiaojun, Fukusima Masao. Stochastic Ro matrix linear complementarity problems[J]. SIAM Journal on Optimization, 2007, 18(2): 482-506.
  • 6Chen Xiaojun, Zhang Chao, Fukusima Masao. Robust solution of monotone stochastic linear complementarity problems[J]. Mathematical Programming Series B, 2009, 117(1): 51-80.
  • 7Zhang Jie, Zhang Liwei, Lin Shuang. A class of smoothing SAA methods for a stochastic mathematical program with complementarity constraints[J]. Journal of Mathematical Analysis and Applications, 2012, 387(1): 201-220.
  • 8Tang Jia, Ma Changfeng. A smoothing Newton method for solving a class of stochastic linear complementarity problems[J]. Nonlinear Analysis: Real World Applications, 2011, 12(6): 3585-3601.
  • 9Xie Yajun, Ma Changfeng. A smoothing Levenberg-Marquardt algorithm for solving a class of stochastic linear complementarity problem[J]. Applied Mathematics and Computation, 2011 217(9): 4459-4472.
  • 10Liu Hongwei, Li Xiangli, Huang Yakui. Solving equations via the trust region and its application to a class of stochastic linear complementarity problems, Computers and Mathematics with Applications, 2011, 61(6): 1646-1664.

二级参考文献2

共引文献1

同被引文献10

  • 1寇述舜.关于线性互补问题解的存在性[J].应用数学和力学,1995,16(7):641-644. 被引量:12
  • 2雍龙泉,邓方安,赵景服.线性互补问题的一种混合整数线性规划解法[J].陕西理工学院学报(自然科学版),2007,23(4):80-82. 被引量:11
  • 3R W COTTLE, J S PANG, R E STONE. The linear comple-mentarity problem [M]. New York: Academic Press,1992.
  • 4R W COTTLE, R E STONE. On the uniqueness of solutionsto linear complementarity problems [J]. Math Programming,1983,27(2) : 191 — 213.
  • 5Y ELFOUTAYENI, M KHALADI. Using vector divisions insolving the linear complementarity problem [J]. Comput ApplMath, 2012, 236(7):1919—1925.
  • 6F MURPHY, M MUDRAGEDA. A decomposition approachfor a class of economic equilibrium models [J]. Oper. Re-search, 1998, 46(3):368-377.
  • 7D H LI, Y Y NIE,J P ZENG,ei al. Conjugate gradient meth-od for the linear complementarity problem with S-matrix[J].Math Comput Modelling, 2008,48(5/6) :918 —928.
  • 8K G MURTY. Linear complementarity, linear and nonlinearprogramming [M]. Berlin: Heldermann Verlag, 1988.
  • 9万中,沈贤龙.模糊均衡问题的求解及应用[J].模糊系统与数学,2012,26(4):117-123. 被引量:2
  • 10寇述舜.线性互补问题全部解的求法——整标集法[J].天津大学学报(自然科学与工程技术版),2001,34(5):582-586. 被引量:8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部