摘要
研究一类高阶线性微分方程f^(κ)+H_κ-1f^(κ-1)+…+H_1f'+H_0f=0解的性质,其中H_j=A_(j1)(z)e^P_(j1)(z)+A_(j2)(z)e^p_(j2)(z)(j=0,1,…,k-1),P_(jq)(q=1,2)是n次复系数多项式,A_(jq)(z)是级小于n的整函数,当P_(jq)首项系数的主幅角不全相等时,得到这类方程的超越解有无穷级且超级为n。
This paper pays attention to investigate the solutions of
f(k) + Hk-1f(k-1) + … + Hlf' + Hof = 0
where H3 = Ajl (z)ep^l(z) + Aj2(z)ePj2(z)(j = O, 1,... , k - 1), Pjq(q = 1, 2) are polynomials with complex coefficients and deg = n, Ajq(Z) are entire functions with a(Ajq) = n. When the argument of the first coefficient of Pjq is different, precise estimates of the growth of their transcendental solutions are obtained.
出处
《高校应用数学学报(A辑)》
CSCD
北大核心
2012年第3期366-374,共9页
Applied Mathematics A Journal of Chinese Universities(Ser.A)
关键词
微分方程
整函数
增长级
超级
超越解
differential equation
entire function
order of growth
hyper-order
transcendental solutions