期刊文献+

Influence of soil type and genotype on Cd bioavailability and uptake by rice and implications for food safety 被引量:36

Influence of soil type and genotype on Cd bioavailability and uptake by rice and implications for food safety
原文传递
导出
摘要 Cadmium (Cd) entering the human body via the food chain is of increasing concern. This study investigates the effects of soil type and genotype on variations in the Cd concentrations of different organs of nine rice plants grown on two types of soils with two Cd levels. Cd concentrations in nine rice cultivars varied significantly with genotype and soil type (P 〈 0.01). The Cd concentration was higher in red paddy soil (RP) than in yellow clayey paddy soil (YP). The average Cd concentrations of different organs in three rice types were indica 〉 hybrid 〉 japonica for the Cd treatments and controls. The polished grain concentration in YP and RP soils had a range of 0.055--0.23 mg/kg and 0.13-0.36 mg/kg in the Cd treatment, respectively. Two rice cultivars in YP soil and five rice cultivars in RP soil exceeded the concentration limits in the Chinese Food Hygiene Standard (0.2 mg/kg). The Cd concentrations in roots, stems, and leaves were all significantly and positively correlated to that in polished grain in a single test. The Cd concentrations in polished grain were positively and significantly (P 〈 0.01) correlated with the calculated transfer factors of stem to grain and leaf to grain Cd transfer. The results indicated that the variations of Cd concentration in grain were related to Cd uptake and the remobilization of Cd from stem and leaf to grain. Also, the cultivars with a strong tendency for Cd-accumulation should be avoided in paddy soil with low soil pH and low organic matter content to reduce the risks to human health from high Cd levels in rice. Cadmium (Cd) entering the human body via the food chain is of increasing concern. This study investigates the effects of soil type and genotype on variations in the Cd concentrations of different organs of nine rice plants grown on two types of soils with two Cd levels. Cd concentrations in nine rice cultivars varied significantly with genotype and soil type (P 〈 0.01). The Cd concentration was higher in red paddy soil (RP) than in yellow clayey paddy soil (YP). The average Cd concentrations of different organs in three rice types were indica 〉 hybrid 〉 japonica for the Cd treatments and controls. The polished grain concentration in YP and RP soils had a range of 0.055--0.23 mg/kg and 0.13-0.36 mg/kg in the Cd treatment, respectively. Two rice cultivars in YP soil and five rice cultivars in RP soil exceeded the concentration limits in the Chinese Food Hygiene Standard (0.2 mg/kg). The Cd concentrations in roots, stems, and leaves were all significantly and positively correlated to that in polished grain in a single test. The Cd concentrations in polished grain were positively and significantly (P 〈 0.01) correlated with the calculated transfer factors of stem to grain and leaf to grain Cd transfer. The results indicated that the variations of Cd concentration in grain were related to Cd uptake and the remobilization of Cd from stem and leaf to grain. Also, the cultivars with a strong tendency for Cd-accumulation should be avoided in paddy soil with low soil pH and low organic matter content to reduce the risks to human health from high Cd levels in rice.
出处 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2012年第9期1647-1654,共8页 环境科学学报(英文版)
基金 supported by the Special Funds for Agroscientific Research (No. 200903015) the Quality Supervision Scientific Research (No. 200910201) in the public interest
关键词 cadmium red paddy soil yellow clayey paddy soil rice genotype health risk cadmium red paddy soil yellow clayey paddy soil rice genotype health risk
  • 相关文献

参考文献6

二级参考文献41

共引文献397

同被引文献489

引证文献36

二级引证文献411

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部