期刊文献+

基于分裂Bregman方法的全变差图像去模糊 被引量:18

Total Variant Image Deblurring Based on Split Bregman Method
下载PDF
导出
摘要 针对全变差图像去模糊问题,提出一种基于分裂Bregman方法的全变差图像去模糊算法,利用分裂Bregman方法来优化其求解问题模型.首先,利用辅助变量及其二次惩罚泛函把全变差去模糊优化问题转化为一个等价的无约束优化问题;其次,基于Bregman迭代将其分解为两个子优化问题采用交替最小化方法进行求解;最后,根据子问题结构特点,采用离散傅立叶变换及收缩技术实现子优化问题的快速计算.实验结果表明,在不同尺寸模糊核条件下本文算法能获得有效、稳定的图像复原结果,相比FTVd、IRN去模糊方法,本文算法复原效果更好,计算更加快速. For total variant image deblurring problem, it was proposed a total variant image deblurring algorithm based on split bregman method, which applied split bregman method to optimizing and solving the problem model. Firstly, taken advantage of auxiliary variable and quadratic penalty function, total variant image deblun'ing optimization problem was converted into a uncon- straint optimization problem. Secondly,based on Bregman iterative,the problem was divided into two sub-problems and use the alternative minimization method to solving. Thirdly, according to the characteristic of subproblern structure, the Discrete Fourier Trans-form and Shrinkage technologies were used to implement the fast computation of sub-problems. The experimental results indicate that with different size blurry kernels, our algorithm can recover image effectively and steadily. Fuithennore, compraring with FFVd and IRN deblurring methods, our algorithm can obtain better recovery results, and compute faster.
出处 《电子学报》 EI CAS CSCD 北大核心 2012年第8期1503-1508,共6页 Acta Electronica Sinica
基金 公益性行业(气象)科研专项(No.GYHY201106044) 国家973重点基础研究发展规划(No.2010CB731804 No.2011CB706901) 国家自然科学基金(No.61103130 No.61070120 No.61141014)
关键词 图像去模糊 全变差 分裂Bregman方法 变量分离 交替最小化方法 image deblutring total variation split Bregman method variable splitting alternative minimization method
  • 相关文献

参考文献15

  • 1A K Katsaggelos. Digital Image Restoration[M]. New York: SpringerVerlag, 1991.
  • 2P Hansen, J G Nagy, et al. Deblurring Images:Matrices, Spec- tra, and Filtering[ M]. Philadelphia, USA: Society for Industrial and Applied Mathematics,2006.
  • 3J Biemond, R L Lagendijk, et al. Iterative method for image de- blurring[ J ]. Proceedings of the 1F.EE, 1990,78(5) : 856 - 883.
  • 4A Tikhonov, V Arsenin. Solution of Ⅲ-Posed Problems[M]. Washington DC: VII. W'mston & Sons, 1977.
  • 5L Rudin, S Osher, E Fatemi. Nonlinear total variation based noise removal algorithm[ J]. Physica D, 1992,60:259 - 268.
  • 6L Rudin, S Osher. Total variation based image restoralion with free local constraints[ J]. IEEE ICIP, 1994,1 : 31 - 35.
  • 7C R Vogel,M E Oman. Fast, robust total variation based recon- struction of noisy, blurred images [ J ]. IEEE Transactions on Image Processing, 1998,7: 813 - 824.
  • 8Y L Wang, J F Yang, et al. A new alternaling minimization al- gorithm for total variation image reconstruction[ J]. SIAM Jour- nal on Image Sciences,2008,1(3) :248 - 272.
  • 9M Afonso, M Figueiredo. Fast image recovery using variable splitting and constrained optimization[ J]. IEEE Transactions on Image Processing,2010,19:2345 - 2356.
  • 10S H than, P E Gill, et al. An augmented lagrangian method for total variation image restoration [ J]. IEEF. Transactions on Image Processing,2010,20(ll) :3097 - 3117.

二级参考文献13

  • 1姜东焕,冯象初,宋国乡.基于非线性小波阈值的各向异性扩散方程[J].电子学报,2006,34(1):170-172. 被引量:15
  • 2孙晓丽,宋国乡,冯象初.基于噪声-纹理检测算子的图像去噪方法[J].电子学报,2007,35(7):1372-1375. 被引量:4
  • 3Rudin L,Osher S,Fatemi E.Nonlinear total variation based noise removal algorithm[J].Physica D,1992,60(1-4):259-268.
  • 4Zhang Lei,et al.Multiscale LMMSE-based image denoising with optimal wavelet selection[J].IEEE Trans.on Circuits and Systems for Video Technology,2005,15(4):469-481.
  • 5Chambolle A.An algorithm for total variation minimization and applications[J].Journal of mathematical imaging and vision,2004,20(1-2):89-97.
  • 6Fadili M J,Peyré G.Total variation projection with first order schemes.2009 16th IEEE In-ternational Conference on Image Processing (ICIP).Cairo,Egypt:IEEE Signal Processing Society,2009.1325-1328.
  • 7Donoho D.Compressed sensing[J].IEEE Trans.Inform.Theory,2006,52(4):1289-1306.
  • 8Goldstein T,Osher S.The split Bregman method for l1 regularized problems[J].SIAM Journal on Imaging Sciences,2009,2(2):323-343.
  • 9Douglas J,Rachford H.On the numerical solution of heat conduction problems in two and three space variables[J].Trans.Americ.Math.Soc,1956,82(2):421-439.
  • 10Chambolle A,et al.Nonlinear wavelet image processing:variational problems,compression,and noise removal through wavelet shrinkage[J].IEEE Trans.Image Proc.,1998,7(3):319-335.

共引文献16

同被引文献130

  • 1于天河,郝富春,康为民,戴景民.红外图像增强技术综述[J].红外与激光工程,2007,36(z2):335-338. 被引量:59
  • 2张旭明,徐滨士,董世运,甘小明.自适应中值-加权均值混合滤波器[J].光学技术,2004,30(6):652-655. 被引量:26
  • 3张航,罗大庸.一种改进的全变差盲图像复原方法[J].电子学报,2005,33(7):1288-1290. 被引量:13
  • 4Liu Y S,Jiang M Y.Despeckling of ultrasound images in contourlet domain[J].Advanced Materials Research,2013,647:283-287.
  • 5Jo?o Miguel Sanches.Ultrasound Imaging[M].US:Springer,2012.49-71.
  • 6Yu Y,Acton S T.Speckle reducing anisotropic diffusion[J].IEEE Transactions on Image Processing,2002,11(11):1260-1270.
  • 7Yu J,Tan J,Wang Y.Ultrasound speckle reduction by a SUSAN-controlled anisotropic diffusion method[J].Pattern Recognition,2010,43(9):3083-3092.
  • 8Mandava A K,Regentova E E.Specklenoise reduction using local binary pattern[J].Procedia Technology,2012,(6):574-581.
  • 9Levine S.An adaptive variational model for image decomposition[A].Anand Rangarajan.Energy Minimization Methods in Computer Vision and Pattern Recognition[C].Berlin Heidelberg:Springer,2005.382-397.
  • 10Sehgal C M.Quantitative relationship between tissue composition and scattering of ultrasound[J].The Journal of the Acoustical Society ofAmerica,1993,94(4):1944-1952.

引证文献18

二级引证文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部