期刊文献+

拥挤交通网络的Braess’悖论现象 被引量:5

Braess' Paradox Phenomenon of Congested Traffic Networks
下载PDF
导出
摘要 在拥挤交通网络中,路段阻抗不仅与本路段车流量有关,也受其它路段车流量影响.本文讨论拥挤交通网络中同时考虑本路段和其它路段流量影响时Braess’悖论的性质及在系统最优分配下新增路段的作用.利用用户平衡(UE)和系统最优(SO)条件,计算得出Braess’悖论发生时交通需求具体范围及SO分配下新增路段有意义的交通需求具体范围,研究其它路段车流量对悖论产生概率影响及对SO分配下新增路段是否起作用的影响,讨论其它路段对UE分配和SO分配网络总阻抗差距的影响.结果表明,悖论发生概率,SO分配下新增路段起作用的概率及两种交通分配网络总阻抗的差距都受其它路段不同程度的影响,这为城市交通网络规划拓宽了思路. In the congested traffic networks, the link congestion is related to the flow on this link, as well as to that on other links. This paper investigates the properties of Braess' paradox and whether the adding link makes sense under the system optimal in the congested traffic networks. Using the user equilibrium (UE) and system optimal (SO), it gives the explicit ranges of the total demand thai the Braess' paradox occurs and the adding link makes sense under SO, respectively. In addition, we investigate the influence of other links on the probability that the paradox occurs and the adding link works under SO, subsequently, we discuss the influence of other links on the difference between the total congestion under UE and that under SO. The results show the probability that the paradox occurs and the adding link works under SO, the difference of total congestion under two assignment methods are both influenced by the extent on other links, which widens theoretical ideas for the assignment of the urban transportation networks.
出处 《交通运输系统工程与信息》 EI CSCD 北大核心 2012年第4期155-160,共6页 Journal of Transportation Systems Engineering and Information Technology
基金 国家自然科学基金(71171124 10871219)
关键词 城市交通 Braess’悖论 解析方法 交通网络 用户平衡 系统最优 urban traffic Braess' paradox analytical approach traffic network user equilibrium system optimization
  • 相关文献

参考文献15

  • 1Braess D. ber ein paradoxon der verkehrsplanun[J].Unternehmensforschung, 1968, 12:258-268.
  • 2Dafermos $, Nagurney A. On some traffic equilibrium theory paradoxes [J].Transpn Hes. B, 1984, 18: 101-110.
  • 3Calvert B, Keady G. Braess paradox and power-law nonlinearities in networks [ J]. J. -usy. Math. Soc, Ser. B-Appl. Math, 1993, 35:1-22.
  • 4Steinberg R, Zangwill W I. The prevalent of Braess' paradox[J]. Transpn Science, 1983, 17:301-318.
  • 5Akamatsu T, Heydecker B. Detecting dynamic traffic. assignment capacity paradoxes in saturated networks [J]. Transportation Science, 2003, 37(2) :123-138.
  • 6Braess D, Nagurney A, Wakolbinger T. On a paradox of traffic planning[ J ]. Transportation Science, 2005, 39(4) :446-450.
  • 7Roughgarden 3'. Selfish routing and the price of anarchy [ J ]. Optima Mathematical Programming Socieb Newsletter, 2006, 74 : 1-14.
  • 8Yang H, Bell M G H. A capacity paradox in nel-,ork design and how to avoid it [ J ]. Transportation Research Part A, 1998, 32(7) :539-545.
  • 9Arnott R,Palma A D,l,indsey R. Properties of dynamic. traffic equilibrium involving bottlenecks, including a paradox and metering [ J ]. Transportation Sciene-, 1993, 27 : 148-160.
  • 10Hallef iord A, Jornsten K, Storoy S. Traf'l'ie equilibrium paradoxes when travel demand is elastic[J].Asia- Pacific Journal of Operational Trseavch, 1994,11:41-50.

同被引文献20

  • 1吴建军,高自友,孙会君,等.城市交通系统复杂性[M].北京:科学出版社,2011.
  • 2Macko M, Larson K, Steskal L'. Braess's paradox for flows over time [J]. Theory of Computing Systems, 2013; 53 (1) : 86-106.
  • 3Pala M, Baltazar S, Huant S, et al. Transport inefficiency in branched out mesoscopic networks: An analog of the Braess paradox [J]. Physical ReviewLetters, 2012, 108 (7): 076802.
  • 4Park K. Detecting Braess paradox based on stable dynamics in general congested transportation networks [J]. Networks SpatialEconomics, 2011, 11 (2): 207-232.
  • 5Lin Weihua, Hong K Lo. Investigating Braess' paradox with time-dependent queues [J]. Transportation Science, 2009, 43 (1): 117-126.
  • 6Rapoport A, Kugler T, Dugar S, et al. Choice of routes in congested traffic networks: Experimental tests of the Braess paradox [J]. Games Economic Behavior, 2009, 65 (2): 538-571.
  • 7Askoura Y, Lebacque J, Haj-Salem H. Optimal sub-networks in traffic assignment problem and the Braess paradox [J]. Computers . Industrial Engineering, 2011, 61 ( 2 ): 382-390.
  • 8Jiang B. A topological pattern of urban street networks: Uni- versality and peculiarity [J]. Physiea A, 2007, 384 (2): 647-655.
  • 9何建伟,曾珍香,李志恒.北京市交通需求管理政策效用分析[J].交通运输系统工程与信息,2009,9(6):114-119. 被引量:10
  • 10尹立辉.长春市4个小区道路现状调查[J].长春大学学报,2011,21(10):52-55. 被引量:2

引证文献5

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部