期刊文献+

伪振子分析法的证明及其在高阶Hopf分岔中的应用 被引量:2

PROOF OF THE PSEUDO-OSCILLATOR ANALYSIS AND ITS APPLICATION ON HIGH-ORDER HOPF BIFURCATION
下载PDF
导出
摘要 采用由闭轨分岔出极限环的思路给出了伪振子分析法的严格证明,所得结果推广了伪振子分析法的主要结论,使其能够应用于高阶Hopf分岔问题,其中分岔周期解的稳定性分析需要高于三次的非线性项.论文给出两个数值算例检验了伪振子分析法的有效性. Based on the idea of bifurcating a limit cycle from a closed orbit of a nonlinear system, this paper presents a mathematical proof of the pseudo-oscillator analysis developed recently. The result generalizes the main conclusions of the pseudo-oscillator analysis, and it can also be used to study the problem of high-order Hopf bifurcation, whose stability requires nonlinear terms with order larger than 3. Two illustrative examples are given for demonstration.
出处 《动力学与控制学报》 2012年第3期202-208,共7页 Journal of Dynamics and Control
基金 国家自然科学基金重点资助项目(11032009) 国家杰出青年科学基金资助项目(10825207)~~
关键词 伪振子分析法 HOPF分岔 时滞微分方程 极限环 pseudo-oscillator analysis, Hopf bifurcation, time-delay, limit circle
  • 相关文献

参考文献3

二级参考文献36

  • 1CHUNG Kwok Wai.A perturbation-incremental scheme for studying Hopf bifurcation in delayed differential systems[J].Science China(Technological Sciences),2009,52(3):698-708. 被引量:15
  • 2施晓红,佘龙华.非线性磁悬浮控制系统的周期运动稳定性研究[J].动力学与控制学报,2005,3(3):52-55. 被引量:9
  • 3赵俊锋,李伟.一个经济周期模型的分岔与混沌[J].动力学与控制学报,2005,3(4):39-43. 被引量:3
  • 4S. L. Das,A. Chatterjee.Multiple Scales without Center Manifold Reductions for Delay Differential Equations near Hopf Bifurcations[J]. Nonlinear Dynamics . 2002 (4)
  • 5A. Raghothama,S. Narayanan.Periodic Response and Chaos in Nonlinear Systems with Parametric Excitation and Time Delay[J]. Nonlinear Dynamics . 2002 (4)
  • 6Attilio Maccari.The Response of a Parametrically Excited van der Pol Oscillator to a Time Delay State Feedback[J]. Nonlinear Dynamics . 2001 (2)
  • 7Tamás Kalmár-Nagy,Gábor Stépán,Francis C. Moon.Subcritical Hopf Bifurcation in the Delay Equation Model for Machine Tool Vibrations[J]. Nonlinear Dynamics . 2001 (2)
  • 8Sue Ann Campbell,Jacques Bélair,Toru Ohira,John Milton.Limit cycles, tori, and complex dynamics in a second-order differential equation with delayed negative feedback[J]. Journal of Dynamics and Differential Equations . 1995 (1)
  • 9Giannakopoulos F,Zapp A.Bifurcations in a planar system of dif- ferential delay equations modeling neural activity. Physica D Nonlinear Phenomena . 2001
  • 10Krise S,Choudhury S R.Bifurcations and chaos in a predator―prey model with delay and a laser-diode system with self-sustained pulsa- tions. Chaos Soliton Fract . 2003

共引文献15

同被引文献41

引证文献2

二级引证文献49

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部