期刊文献+

一个可积非线性演化方程的达布变换及其精确解

Darboux Transformation and Exact Solutions for an Integrable Nonlinear Evolution Equation
下载PDF
导出
摘要 研究了一个新的可积非线性演化方程,基于其Lax对和谱问题的规范变换,构造出该方程的一个达布变换,进而利用此达布变换,得到该方程的精确解,包括有理解、孤子解与周期解. A new integrable nonlinear evolution equation was proposed. Based on the resulting Lax pair,a Darboux transformation of the nonlinear evolution equation was structured with the aid of the gauge transformation, by which some exact solutions of the nonlinear evolution equation were obtained, inclu- ding rational solutions, soliton solutions and periodic solutions.
出处 《郑州大学学报(理学版)》 CAS 北大核心 2012年第2期31-34,共4页 Journal of Zhengzhou University:Natural Science Edition
基金 国家自然科学基金资助项目 编号11171312 11001250
关键词 非线性演化方程 达布变换 精确解 nonlinear evolution equation Darboux transformation exact solution
  • 相关文献

参考文献3

二级参考文献12

  • 1Flaschka H. Relations between Infinite-dimensional and Finite-dimensional Isospectral Equations. in Proc RIMS Sym. On a Nonlinear Integrable Systems, Kyoto Japan, World Sci Pr Singapore. 1983.219-239.
  • 2Ablowitz M J, Segur H. Solitons and the Inverse Scatting Transform. SIAM Studies in Appl Math, Philadelphia, 1981.
  • 3扎哈罗夫V E,诺维科夫S P,马纳科夫S V等著,彭启才译.孤立子理论.北京:科学出版社,1985.
  • 4Al'ber S I. Investigation of Equations of KdV Type by the Method of Recurrence Relations. J London Math Soc (in Russian), 1979, 467-480.
  • 5Tu Guizhang. On Complete Integrability of a Large CLass of Finite-dimensional Hamiltonian Systems. Advances in Math (in China), 1991,20:60-74.
  • 6Cao Cewen. Nonlinearization of the Lax System for the AKNS Hierarchy, Science in China, 1990, A 33(5) :528-536.
  • 7Cao Cewen, Ceng Xianguo. Classical Integrable System Generated through Nonlinearization of Eigenvalue Problem. ,Springer-Verlag, Berlin, Heidelberg, 1990,68-78.
  • 8Al'her S I. On Stationary Problem for Equations of KdV Type. Comm Pur Appl Math, 1981,34-259.
  • 9Cao Cewen , Parametric Representation of the Finite-band Solution of the Heisenberg Equation. Phys Let,1994 A: 333-338.
  • 10Cao Cewen, Geng Xianguo. A Nonconfocal Generator of Involutive Systems and Three Associated Soliton Hierarchy, J Math Phys, 1991,32:2323-2328

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部