期刊文献+

微博舆情热点分析系统设计研究 被引量:4

Public Opinion Hotspot Analysis System Design about Microblog
下载PDF
导出
摘要 舆情分析关乎国家发展与社会和谐,目前已有越来越多的机构和行业从事舆情分析。面对互联网海量的数据信息,新浪微博舆情热点分析系统以目前使用极为普遍的新浪微博为数据源,着眼于新浪微博热点信息的分析。新浪微博舆情热点分析系统目前已经实现了微博抓取、微博分析。文章介绍了系统的体系结构和详细设计,并对系统在实现中所遇到的主要问题及解决方案进行了描述。最后,文章分析了系统需要改进的方面,以及该领域的研究和发展方向。 Public opinion analysis is related to development of nation and harmony of society, more and more institutes have taken part in it. For the existence of mass information on the internet, our public opinion analysis system chooses widely-used sina microblog as our data source and focuses on analysis of hotspots on it. The system has now implemented Microlblog information climb, microblog analysis. The paper introduced the architecture of the system, while at the same time gave description to main problems came across in implementations and.provided solutions to them. At the end, we analyzed the aspects that need improving, and future research and development of the field.
出处 《信息网络安全》 2012年第9期60-64,共5页 Netinfo Security
关键词 微博 舆情 热点 microblog public sentiment hotspot raw climb selective climb
  • 相关文献

参考文献5

二级参考文献41

  • 1宋丹,王卫东,陈英.基于改进向量空间模型的话题识别与跟踪[J].计算机技术与发展,2006,16(9):62-64. 被引量:23
  • 2Lavrenko V,Allan J,DeGuzman E,et al.Relevance models for topic detection and tracking[C]//Proceedings of Human Ianguage Technologies Conference, HLT, 2002 : 104-110.
  • 3Chen F,Farahat A,Brants T.Multiple measures and source-pair information in story link detection[C]//Proceedings of HLT-NAACL, 2004: 313-320.
  • 4Farahat A,Chen F,brants T.Optimizing story link detection is not equivalent to optimizing new event detection[C]//Proceedings of ACL, 2003 : 232-239.
  • 5王永成.中文信息处理技术及其基础[M].上海:上海交通大学出版社,1990..
  • 6Hatzivassiloglou V. Simfinder: A Flexible Clustering Tool for Summarization[C]//Proc of NAACL Workshop on Automatic Summarization, Association for Computational Linguistics. Pittsburgh, USA: [s. n.]. 2001: 4-14.
  • 7Fang Y C. Parthasarathy S, Schwartz F. Using Clustering to Boost Text Classification[C]//Proc. of the IEEE ICDM Workshop on Text Mining. Maebashi City, Japan: [s. n.], 2002: 1-9.
  • 8Cutting D, Karger D. Scatter/Gather: A Cluster Based Approach to Browsing Large Document Collection[C]//Proc. of SIGIR'92. New York, USA: ACM Press, 1992:318-329.
  • 9Salton G, Wong A, Yang C S. A Vector Space Model for Automatic Indexing[J]. Communications of ACM, 1995, 18( 11 ): 613-620.
  • 10Ackennan M, Billsus D, Gaffney S. Learning Probabilistic User Profiles[J]. AI Magazine, 1997, 18(2): 47-56.

共引文献123

同被引文献41

引证文献4

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部