期刊文献+

热轧MB8镁合金的超塑性 被引量:3

Superplasticity of hot rolled MB8 magnesium alloy
下载PDF
导出
摘要 对热轧MB8(Mg-1.5Mn-0.3Ce)镁合金板材的超塑性进行了研究。高温拉伸实验结果表明,合金在573~723 K及2×10-2~4×10-4s-1应变速率范围内具有良好的超塑性,在673 K及4×10-4s-1条件下得到最大断裂伸长率为441.6%;在723 K时最高应变速率敏感系数m为0.42,此时流变应力仅为6.3 MPa。此外,采用SEM对拉伸试样断口形貌进行了观察,并通过断裂区域显微组织的观察分析了Mg-1.5Mn-0.3Ce镁合金超塑性变形的机制。 Superplasticity of hot rolled MB8(Mg-1.5Mn-0.3Ce) magnesium alloy was studied.The results show that the alloy exhibits superplasticity at temperature of 573 to 723 K and strain rate of 2×10-2 to 4×10-4s-1.The maximum elongation to failure reaches 441.6% at 673 K and 4×10-4 s-1.At 723 K,the strain rate sensitivity and flow stress are 0.42 and 6.3 MPa,respectively.Moreover,the fracture morphology of the tensile specimens was observed by SEM,and the mechanism of the superplastic deformation was discussed based on the observation of microstructure near the fracture region after tensile test.
出处 《材料热处理学报》 EI CAS CSCD 北大核心 2012年第9期17-22,共6页 Transactions of Materials and Heat Treatment
基金 广州市科技支撑计划资助项目(2009Z2-D811) 中央高校基本科研业务费专项资金资助(2009ZM0264)
关键词 MB8镁合金 超塑性 应变速率 变形机制 MB8 magnesium alloy superplasticity strain rate deformation mechanism
  • 相关文献

参考文献19

  • 1Valiev R Z, Islamgaliev R K, Alexandrov I V. Bulk nanostructured materials from severe plastic deformation [ J ]. Progress in Materials Science ,2000, 45(2) :103 - 189.
  • 2Furukawa M,Horita Z, Nemoto M, et al. The use of severe plastic deformation for mierostructural control [ J ]. Materials Science and Engineering, 2002,324(1 -2) :82 - 89.
  • 3Koike J,Kobayashi T, Mukai T, et al. The activity of non-basal slip systems and dynamic recovery at room temperature in fine-grained AZ31B magnesium alloys[ J]. Aeta Materialia,2003,51 (7) : 2055 - 2065.
  • 4Del Valle J A,P6rez-Prado M T, Raano 0 A. Accumulative roll bonding of a Mg-based AZ61 alloy[ J ]. Materials Science and Engineering A,2005, 410-411:353 -357.
  • 5于彦东,张凯锋,蒋大鸣,郑海荣,王长丽.轧制镁合金超塑性和超塑胀形[J].中国有色金属学报,2003,13(1):71-75. 被引量:35
  • 6Wu L H, Wang L G, Wang P, et al, Superplasticlty and deformation mechanism of Mg-7.0AI4). 2Zn alloys[ J ]. Rare Metal Materials and Engineering, 2010,39(2) :194 - 197.
  • 7Mohri T,Mabuchi M,Nakamura M,et al. Mierostructural evolution and superplasticity of rolled Mg-9AI-1Zn [ J ]. Materials Science and Engineering A,2000,290(1 -2) :139 - 144.
  • 8Park S S,Bae G T,Kang D H,et al. Superplastic deformation behavior of twin-roll east Mg-6Zn-IMn-IAI alloy[J]. Scripta Materialia,2009,61:223 -226.
  • 9康志新,彭勇辉,桑静,简炜炜,赵海东,李元元.T型通道挤压变形Mg-1.5Mn-0.3Ce合金的超塑性和组织演变[J].金属学报,2009,45(9):1117-1124. 被引量:11
  • 10龚义吉,杨振恒,梁名士,等.MB8镁合金板材的超塑气压成形[J].锻压技术1984,3:29—31.

二级参考文献27

  • 1T.H. Zhang, Z.Z. Yi, X. Y. Wu, S.J. Zhang, Y. G. Wu, X. Zhang, H.X. Zhang, A.D. Liu and X.J. Zhang Key Laboratory for Radiation Beam Technology and Material Modification, Institute of Low Energy Nuclear Physics, Beijing Normal University, Beijing Radiatio.Mo SILTCIDE SYNTHISIS BY DUAL ION BEAM DEPOSITION[J].Acta Metallurgica Sinica(English Letters),2002,15(2):187-190. 被引量:76
  • 2肖阳,张新明,陈健美,蒋浩.Mg-9Gd-4Y-0.6Zr合金挤压T5态的高温组织与力学性能[J].中国有色金属学报,2006,16(4):709-714. 被引量:23
  • 3郭强,严红革,陈振华,张辉.多向锻造工艺对AZ80镁合金显微组织和力学性能的影响[J].金属学报,2006,42(7):739-744. 被引量:64
  • 4刘润广,蒋浩民,姜勇,彭福林,尹福林,张宏征.2214铝合金超塑性变形机制[J].金属学报,1996,32(12):1244-1247. 被引量:5
  • 5[1]Watanabe H, Mukai T. Effect of temperature and grain size on the dominant diffusion process for superplastic flow in an AZ61 magnesium alloy[J]. Acta Mater, 1999, 147(14): 3753-3758.
  • 6[2]Narayanasamy R, Sathiyanarayanan S, Ponalagusamy R. A study on barrelling in magnesium alloy solid cylinders during cold upset forming[J]. Journal of Materials Processing Technology, 2000, 101: 64-69.
  • 7[3]Narayanasamy R, Sathiyanarayanan S, Ponalagusamy R. Uniaxial tensile behaviour of ZM-21 magnesium alloy at room temperature[J]. Journal of Materials Processing Technology, 2000, 102: 56-58.
  • 8[4]Huang J C, Chuang T H. Progress on superplasticity and superplastic forming in Taiwan during 1987-1997[J]. Materials Chemistry and Physics, 1999, 57: 195-206.
  • 9[5]Bussiba A, Ben A A. Grain refinement of AZ31 and ZK60 Mg alloys-towards superplasticity studies[J]. Materials Science and Engineering A, 2001, 302: 56-62.
  • 10[6]Mabuchi M, Iwasaki H, Higashi K. Low temperature superplasticity of magnesium alloy processed by equal channel angular extrusion (ECAE) [J]. Materials Science Forum, 1997, 243-245: 547-552 .

共引文献78

同被引文献31

  • 1徐淑波,秦振,刘婷,景财年,任国成.剧烈塑性变形对AZ31镁合金显微组织和力学性能的影响(英文)[J].中国有色金属学会会刊:英文版,2012,22(S1):61-67. 被引量:1
  • 2张凯锋,尹德良,王国峰,韩文波.热轧AZ31镁合金超塑变形中的微观组织演变及断裂行为[J].航空材料学报,2005,25(1):5-10. 被引量:11
  • 3孟利,杨平,解延雷,冯惠平.低应变速率下AZ31镁合金热形变过程的取向成像分析[J].中国体视学与图像分析,2004,9(3):129-133. 被引量:2
  • 4MORI)IKE B L, EBERT T. Magnesiunq properties-applications- potential[J]. Materials Science and Engineering: A, 2001,302 (1):37--45.
  • 5LUO A A, MISHRA R K, POWEI.L B R, et al. Magnesium a[ loy development for automotive applications[J]. Materials Science Forum,2012,706(1):69--82.
  • 6WATANABE H. Mechanical properties and texture of superplas- tieally deformed AZ31 magnesium alloy[J]. Materials Science and Engineering.. A, 2008,477 (1-- 2) :153--161.
  • 7BLANDIN J J. Superplastic forming of magnesium alloys: pro- duction of microstructures, superplastic properties, cavitation be- havior[J]. Superplasticity in Advanced Materials, 2007, 551- 552:211--217.
  • 8FIGUEIREDO R B, LANGDON T G. Grain refinement and me- chanical behavior of a magnesium alloy processed by ECAP[J]. Journal of Materials Science,2010,45(17) :4827--4836.
  • 9HOSOKAWA H, IWASAKI H, MORI T. Effects of Si on de-formation behavior and cavitation of coarse-grained A[4.5Mg a[ loys exhibiting large elongation[J]. Acta Mater, 1999,47 (6) : 1859--1867.
  • 10MOHANMED F A. On the origin of super plastic flow at very low stress [J]. Materials Science and Engineering: A, 2005, 410--411..89--94.

引证文献3

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部