期刊文献+

轧辊表面电火花沉积涂层的耐磨性 被引量:4

Wear resistance of WC coating on roller surface prepared by electro-spark deposition
下载PDF
导出
摘要 采用电火花沉积工艺,用WC陶瓷硬质合金在铸钢轧辊表面制备了一层合金涂层。采用X射线衍射仪、扫描电镜、显微硬度计等对沉积层的相结构、显微组织、显微硬度及耐磨性能进行了分析。结果表明:沉积层主要由Co3W3C、Fe3W3C、W2C、Si2W等相组成;沉积层与基体呈冶金结合,细小的硬质相弥散分布于沉积层中;沉积层的平均硬度为1915 HV0.3,约是基体硬度(352 HV0.3)的5.4倍;其室温耐磨性能比基体提高了2.1倍,高温耐磨性能比基体提高了1.9倍。室温下沉积层的主要磨损机理为磨粒磨损;高温下沉积层的主要磨损机理为粘着磨损、氧化磨损和疲劳磨损。 WC coatings were prepared on surface of cast steel roller by electro-spark deposition(ESD) technique.The phases,microstructure and microhardness of the coatings were investigated by means of scanning electro microscopy(SEM),X-ray diffraction(XRD) and microhardness test.The results show that the coatings metallurgically bonded with the substrate consist of Fe3W3C,Co3W3C,Si2W and W2C phases.The fine hard phases are distribute a dispersively in the coatings.The average hardness of the coatings(1915 HV0.3) is about 4.4 times higher than that of the substrate(352 HV0.3),its room temperature wear resistance is 2.1 times higher than that of the substrate and its wear resistance at high temperature is 1.9 times higher than that of the substrate.The room temperature wear mechanism is abrasive wear and the wear mechanism at high temperature is combination of adhesive wear,oxidation wear and fatigue wear.
出处 《材料热处理学报》 EI CAS CSCD 北大核心 2012年第9期112-116,共5页 Transactions of Materials and Heat Treatment
基金 水利部"948"推广项目(No.201048)
关键词 电火花沉积 WC沉积层 铸钢轧辊 耐磨性 ESD WC coating roller of cast steel wear resistance
  • 相关文献

参考文献10

二级参考文献43

共引文献80

同被引文献96

  • 1商俊超,梁秀兵,郭永明,陈永雄,徐滨士.高速电弧喷涂镍基非晶纳米晶复合涂层及其磨损性能研究[J].装甲兵工程学院学报,2013,27(2):84-87. 被引量:5
  • 2王建升,李刚,刘友营,程锐.电火花沉积与激光熔覆复合涂层的组织与性能[J].材料热处理学报,2012,33(S2):155-159. 被引量:7
  • 3陈伟伟,朱颖,康慧,曲平.电火花沉积技术国内外研究现状[J].焊接,2006(5):21-25. 被引量:13
  • 4汪瑞军,黄小鸥.电火花沉积/堆焊技术的国内外应用现状[J].焊接,2006(10):19-23. 被引量:13
  • 5Farhat R,Brochu M. Utilisation of electrospark deposition to restore local oxidation resistance properties in damaged NiCoCrAIY and CoNiCrA1Y coatings[ J]. Canadian Metallurgical Quarterly ,2012,51 (3) :313 - 319.
  • 6Heard D W, Brochu M. Development of a nanostructure microstructure in the Al -Ni system using the electrospark deposition process[ J]. Journal of Materials Processing Technology,2010,210 (6 - 7 ) :892 - 898.
  • 7Belik V D, Litvin R V, Kovalchenko M S. Effect of substrate tempera- ture on the electrospark deposition, structure, and mechanical properties of coatings. I. Kinetics of substrate heating during electrospark deposi- tion[J]. Powder Metallurgy and Metal Ceramics,2012,50( 11 -12): 698 - 703.
  • 8Zamulaeva E I, Levashov A E, Kudryashov A E. Effect of WC - Co e- lectrode structure on the rate of electrospark coating deposition[ J ]. Met- allurgist,2012,55(9 - 10) :628 -633.
  • 9Cadney S, Goodall G, Kim G, et al. The transformation of an Al - based crystalline electrode material to an amorphous deposit via the electrospark welding process[ J]. Journal of Alloys and Compounds,2009,476 ( 1 - 2) :147 - 151.
  • 10Goodall G, Kaplin C, Broehu M. Autogenous eleetrospark deposition of NiCoCrAlY [ J ]. Canadian Metallurgical Quarterly, 2011,50 ( 2 ) : 145 - 152.

引证文献4

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部