期刊文献+

基于UPF的INS非高斯噪声故障检测 被引量:2

UPF-based Fault Detection Method of Integrated Navigation System with Non-Gaussian Noises
下载PDF
导出
摘要 由于实际组合导航系统很可能受到非高斯噪声的影响,而传统的故障检测方法对非高斯噪声情况讨论较少。基于粒子滤波的故障检测技术非常适合处理非线性、非高斯问题,并且有效地克服了传统方法的不足,但是普通的粒子滤波器存在粒子"退化"等问题。为此,本文提出了一种基于UPF滤波器的导航系统故障检测方法,通过在普通粒子滤波中引入UKF产生建议分布及重采样的方法,有效抑制了普通粒子滤波器粒子"退化"的问题。并针对噪声的非高斯特性,将似然检测方法与粒子滤波可以估计似然函数的特点相结合,提出了一种基于UPF的故障检测方法。通过GPS/SINS组合导航系统在噪声服从瑞利分布情况下的故障检测仿真实例,表明此方法适用于在非高斯噪声情况下的导航系统故障检测。 As the actual navigation systems are likely to be affected by non - Gaussian noises, while the traditional fault detection meth- ods had little discussion on this situation. Because the particle filter - based fault detection is appropriate for non - linear and non - Gaussian problems, it has effectively overcome the deficiencies of traditional methods. But there are particle degeneration drawbacks of the common particle filter. The paper presents an unscented particle filter (UPF) - based fault detection method of navigation systems with non - Gaussian noises. By using the UKF to generate proposal distributions and the re - sampling methods within the particle filter, the drawbacks of particle " degeneracy" of the generic particle filter can be effectively compensated. Considering the characteristics of the particle filter which can estimate the likelihood function, a UPF - based fault detection method is presented. The fault detection sim- ulation examples of the GPS/SINS integrated navigation system with Rayleigh noises show that this method is applicable to the fault de- tection of navigation systems in the case of non - Gaussian noises.
出处 《控制工程》 CSCD 北大核心 2012年第5期743-746,共4页 Control Engineering of China
基金 陕西省西安市科技计划项目(CXY1121)
关键词 UPF 故障检测 似然检测 非高斯噪声 组合导航 UPF fault - detection likehood test non - Gaussian noise integrated navigation
  • 相关文献

参考文献5

  • 1Ping Li and Visakan Kadirkamanathan. Particle filtering based likelihood ratio approch to fault diagnosis in nonlinear stochastic systems [ C]. IEEE transactions on system,man,and cybernetics -Part C : Applications and reviews,2001.
  • 2Qinghua Zhang. Nonlinear system fault. detection and isolation based on bootstrap particle filters [ C]. Proceedings of the 44th IEEE conference on Decision and Control, and the European Control Conference 2005 Seville. Spain, 2005.
  • 3Ilia Rapoport, Yaakov Oshman. Fault tolerant particle filtering u-sing IMM - based Rao - Blackwellization [ C]. AIAA Guidance, Navigation, and Control Conference and Exhibit, 2004.
  • 4葛哲学.非高斯噪声下基于Unscemed粒子滤波器的非线性 系统故障诊方法[J].兵工学輝,2007, 3 (10):.
  • 5S M Arulampaiam, S Maskell, N J Gordon, and T C Clapp. A tutorial on particle iilteis for online nonlinear / non - gaussian Bayesian tracking [ J]. IEEE Transactions on Signal Processing, 2002, 2 (50): 174-188.

同被引文献7

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部