期刊文献+

变风量空调系统优化控制策略研究 被引量:4

Research on Optimization Control Strategy of VAV Air Conditioning System
下载PDF
导出
摘要 变风量空调系统是多变量,大滞后、非线性和不确定性的系统,普通的模糊神经网络控制已难以满足其多变量动态控制的要求,为改善变风量空调系统控制性能,本文提出了一种小波模糊神经网络预测控制方法,实现变风量空调的温湿度有效控制。通过小波神经网络预测器在线建立被控对象的数学模型,并用模糊RBF神经网络控制器对所得到的信息在线修正,优化控制器参数,从而改善系统的控制效果。仿真结果表明,小波模糊神经网络预测控制具有很强的鲁棒性和自适应能力,控制精度高,控制效果好,安全可靠等优点,具有广泛的应用价值。 Aiming at variable air volume air conditioning system which is a multi-variable, large delay, nonlinear and uncertain sys- tem, the common fuzzy neural network control has been difficult to meet the requirements of its multi-variable dynamic control. In order to "improve VAV air conditioning system's performance, this paper proposed a wavelet fuzzy neural network predictive control, to control the temperature and humidity conditions of variable air volume air conditioning. Through wavelet neural network on line established mathematical model of controlled object, and using fuzzy RBF neural network controller on line corrected the information .we got, to op- timize the parameters of controller, thus to improve control effect of this system. The simulation results show that wavelet fuzzy neural network predictive control has stronger robustness and adaptive ability, high control precision, better and reliable control effect and other advantages.
作者 李界家 瞿睿
出处 《控制工程》 CSCD 北大核心 2012年第5期790-794,共5页 Control Engineering of China
基金 国家自然科学基金(60874103)
关键词 变风量空调 小波模糊神经网络 小波神经网络 模糊RBF神经网络预测控制 variable air volume air conditioning wavelet Fuzzy neural network wavelet neural network Fuzzy RBF neural network predictive control
  • 相关文献

参考文献2

二级参考文献12

  • 1刘军,刘丁,钱富才,王玲芝.基于模糊神经网络大容量输油泵多变量控制[J].控制理论与应用,2005,22(6):961-964. 被引量:6
  • 2Takagi T,Sugeno M.Fuzzy identification of system and its application to modeling and control [J].IEEE Trans Syst, Man Cyber,1985,SMC-15:116-132.
  • 3KevinMP StephenY.Fuzzy control [M].北京:清华大学出版社,2001..
  • 4张乃尧 阎平凡.神经网络与模糊控制 [M].北京:清华大学出版社,1999..
  • 5Bianchini M,Frasconi P,Cori M.Learning without minima in radial basis function network [J].IEEE Trans On Neural Network,1995,(3):749-756.
  • 6Hunt K J.Extending the functional equivalence of radial basis function networks and fuzzy inference system [J].IEEE Trans On Neural Network,1996,(3):776-781.
  • 7SimonH.Neural networks-a comprehensive foundation [M] Second Edition[M].北京:清华大学出版社,2001..
  • 8Orr M J L.Regularization in the selection of radial basis function centers [J].Neural Computation,1995,(7):606-623.
  • 9Chen S,Cowan C F N,Grant P N.Orthogonal least squares learning algorithms for radial basis function networks [J].Neural Computation,1995,(7):606-623.
  • 10鲍鸿,黄心汉,李锡雄.T-S型模糊RBF神经网络快速学习算法[J].华中理工大学学报,1999,27(2):84-86. 被引量:6

共引文献21

同被引文献17

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部