期刊文献+

七方程可压缩多相流模型的HLLC格式及应用 被引量:4

AN HLLC SCHEME FOR THE SEVEN-EQUATION MULTIPHASE MODEL AND ITS APPLICATION TO COMPRESSIBLE MULTICOMPONENT FLOW
下载PDF
导出
摘要 针对Saurel和Abgrall提出的两速度两压力的七方程可压缩多相流模型,改进了其数值解法并应用于模拟可压缩多介质流动问题.在Saurel等的算子分裂法基础上,根据Abgrall的多相流系统应满足速度和压力的均匀性不随时间改变的思想,推导了与HLLC格式一致的非守恒项离散格式以及体积分数发展方程的迎风格式.进一步,通过改变分裂步顺序,构造了稳健的结合算子分裂的三阶TVD龙格--库塔方法.最后通过几个一维和二维高密度比高压力比气液两相流算例,显示了该方法在计算精度和稳健性上的改进效果. In this paper, the numerical method for the two-pressure and two-velocity seven-equation model presented by Saurel and Abgrall is improved and applied to numerical simulation of compressible multicompo- nent flows. Based on the operator splitting method given by Saurel et al. and the idea proposed by Abgrall that "for a two phase system, uniformity in velocity and pressure at t= 0 will be kept on the same variable during / its temporal evolution", discretization for the non-conservative terms and upwind scheme for the volume fraction evolution equation are derived in terms of the underlying HLLC approximate Riemann solver used for the conservation equations. Moreover, the third-order TVD Runge-Kutta method is implemented in conjunction with the operator splitting to obtain a robust procedure by reordering the sequence of operators. Numerical tests with several ld and 2d compressible gas-liquid multicomponent flow problems with high density and high pressure ratios demonstrate that the present method is more accurate and robust than previous methods.
出处 《力学学报》 EI CSCD 北大核心 2012年第5期884-895,共12页 Chinese Journal of Theoretical and Applied Mechanics
基金 国家自然科学基金(10972230,11021101) 国家重点基础研究发展计划(2009CB731505)资助项目~~
关键词 可压缩多相流 七方程模型 算子分裂 HLLC格式 TVD龙格-库塔 compressible multiphase flow, seven-equation multiphase model, operator splitting, HLLC,TVD Runge-Kutta
  • 相关文献

参考文献1

二级参考文献9

  • 1Toumi I, Kumbaro A. An approximate linearized Riemann solver for a two-phase model[ J]. J Comput Phys , 1996,124: 286-300.
  • 2Maso G Dal, Floch P Le, Murat F. Definition and weak stability of nonconservative products[ J]. J Math Pures Appl , 1995,74:483-548.
  • 3Sainaulieu L. Finite volume approximate of two phase-fluid flows based on an approximate Roe-type Riemann solver[J] . J Comput Phys , 1995,121:1-28.
  • 4Saurel R, Abgrall R. A multiphase Godunov method for compressible multi-fluid and multiphase flows[J]. J Comput Phys , 1999,150: 425-467.
  • 5Abgrall R. How to prevent pressure oscillations in the multicomponent flow calculations: A quasi conservative approach[ J]. J Comput Phys, 1996,125:150-160.
  • 6Drew D A. Mathematical modeling of two-phase flow[ J] .Ann Rev Fluid Mech, 1983,15:261-291.
  • 7Saurel R, Gallout T. Models et Methods Numeriques Pour Les Ecoulements Fluids [ M]. Cours de DEA, Center de Mathematiques. Provence:University de Provence, 1998.
  • 8Toro EF. Riemann Solvers and Numerical Methods for Fluid Dynamics[M]. Berlin: Springer-Verlag, 1997.
  • 9Roe P L. Approximate Riemann solver, parameter vectors, and difference schemes [ J]. J Comput Phys, 1981,43: 357-372.

共引文献1

同被引文献32

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部