摘要
提出了一种与结构动特性协同的自适应Newmark方法,其参数可基于数值弥散和数值耗散最小化的条件用解析方法求得.对线性单自由度动力学系统,该方法的相位误差精确为零并且谱半径为1.对线性多自由度系统和非线性系统,该方法在所有二阶积分解法中最精确.数值结果验证了新提出格式的高精度和结论.
This paper presents a self-adaptive Newmark method whose parameters are dependent upon the structural dynamic characteristics, and the parameters can be analytically determined based on the conditions of minimizing the numerical dispersion and dissipation. The phase error of the proposed method is exactly zero for linear single degree-of-freedom (DOF) dynamic system. Moreover, the proposed method is the most accurate method among the second order Numerical simulations validate the present integration methods for multi-DOF method and the theoretical results. system and nonlinear system
出处
《力学学报》
EI
CSCD
北大核心
2012年第5期904-911,共8页
Chinese Journal of Theoretical and Applied Mechanics
基金
国家自然科学基金项目(11172028
10772014)
国防973项目(613133)资助~~