期刊文献+

雷达多目标跟踪的关联粒子滤波研究 被引量:4

Research on Association Particle Filter for Radar Multiple Targets Tracking
下载PDF
导出
摘要 在整个导弹防御系统中,多目标跟踪是很重要的一项技术,要求系统快速机动地跟踪导弹目标,但系统存在非线性问题,使用传统方法使跟踪偏差大。为解决上述问题,提出在非高斯条件下,把高斯-厄米特粒子滤波算法和联合概率数据关联方法相结合,对多目标跟踪的数据进行关联处理并进行状态估计。利用高斯-厄米特滤波计算的均值、协方差产生密度函数,并生成具有后验特征的粒子。用联合概率数据关联方法进行杂波剔除和数据关联,并对综合的关联粒子滤波算法进行仿真。仿真结果表明,改进方法可以有效解决多目标的准确跟踪问题。 In missile defense system, multiple targets tracking is a key technology. For multiple missile targets of fast maneuvering, this paper integrated the Gauss-Hermite particle filter and Joint probabilistic data association method together, and then processed multi-target tracking data associationly and estimateed state value in the condi-tion of nonlinear and non-Gaussian. This method used Gauss-Hermite filter which calculates the mean and covari-ance to generate the importance density function, and then generated particles with posterior characteristics. Mean-while, joint probabilistic data association method was used to eliminate clutter waves and associate data. Finally, as-sociation particle filter algorithms was generated. Simulation results show that the proposed method can solve the prob-lem of tracking multiple targets effectively.
作者 禹磊 唐硕
出处 《计算机仿真》 CSCD 北大核心 2012年第9期17-21,共5页 Computer Simulation
关键词 多目标跟踪 高斯-厄米特积分 联合概率数据关联 重要密度函数 关联粒子滤波 Multiple targets tracking Gauss-hermite particle filter Joint probabilistic data association Importancedensity function Association particle filter
  • 相关文献

参考文献9

  • 1S J Julier, J K Uhlmann. Unscented filtering and nonlinear eatima- tion [ C ]. Procesedings of the IEEE, ( S0018 - 9219 ), 2004,92 (3) : 401-422.
  • 2S J Julier, J K Uhlmann. A new extension of the Kalman filter to nonlinear system [ J ]. IEEE Transactions on Automatic Control, 2002,47 ( 8 ) : 1406-1408.
  • 3Y Boers, J N Driessen. Interacting multiple model particle filter [C]. IEEE Proceedings- Radar Sonar Navigation, 2003, 150 (5) : 344-349.
  • 4H K Jayesh, Petar M D. Gaussian sum particle filtering[ J]. IEEE Transactions on Signal Processing, 2003,1 (10) :2602-2612.
  • 5Shaodong Yang, Desheng Wen, Jing Sun. Gaussian Sum Particle Filter for Spacecraft Attitude Estimation [ C ]. 2010 2nd Interna- tional Conference on Signal Processing Systems, 2010,3 : 566 - 570.
  • 6H K Jayesh, M D Petar. Gaussian particle filtering [ J ]. IEEE Transactions on Signal Processing, 2003,51 ( 10 ) : 2592 -2601.
  • 7J Carpenter, P Clifford, P Fearnhead. Improved particles filter for nonlinear problems [ C ]. IEEE Proceedings- Radar Sonar Naviga- tion, 1999,146( 1 ) :2-7.
  • 8A Ienkaran, H Simon, J E Robert. Discrete-Time Nonlinear Filte- ring Algorithms Using Guass- Hennite Quadrature [ C ]. Proceed- ings of the IEEE, 2007,95 (5) : 953-977.
  • 9袁泽剑,郑南宁,贾新春.高斯-厄米特粒子滤波器[J].电子学报,2003,31(7):970-973. 被引量:77

二级参考文献9

  • 1南京大学数学系编.数值逼近方法[M].北京:科学出版社,1978..
  • 2G Kitagawa. Monte Carlo filter and smoother for non Gaussian nonlinear state space models [J] .Journal of Computational and Graphical Statistics, 1996,5:1 - 25.
  • 3Avitzour. A stochastic simulation Bayesian approach to multitarget tracking [A] .IEE Proceedings on Radar,Sonar and Navigation [C].UK: lEE, 1995.
  • 4M lsard, Blake. Contour tracking by stochastic propagation of conditional density [ A ]. European Conference on Computer Vision [ C ]. UK:Cambridge, 1996. 343 - 356.
  • 5I Kazuftmfi, K-Q Xiong. Gaussian filters for nonlinear filtering problems[ EB/OL]. available from http://www, researchindex, com.
  • 6S J Julier,J K Uhlmann. A new extension of the Kalman filter to nonlinear systems [ A ]. Proceedings of AeroSense: The 11th International Symposium on Aerospace/Defence Sensing, Sinmlation and Controls[ C], Florida: ISADSSC, 1997.
  • 7A Doucet. On Sequential Simtdafion-Based Methods for Bayesian Filtering [ EB/OL]. available from http://www, researchindex, com.
  • 8R Van der Merwe. A Doucet the Unscented Particle Filter, Advances in Neural Information Processing Systems [M]. M IT,2000.
  • 9N J Gordon, D J Salmond, A F M Smith. A novel approach to nonlinear and non-Ganssian Bayesian state estimation [ A ]. IEE Proceedings-F[C]. UK: IEE, 1993,.

共引文献76

同被引文献56

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部