期刊文献+

无线移动传感器网络节点自定位控制仿真研究

Self-localization Control Simulation Research of Network Node of Wireless Dynamic Sensor
下载PDF
导出
摘要 研究移动节点确认自身位置信息的节点自定位问题,传感器节点的移动部署和数据通信容易受外界环境的干扰,造成网络节点自定位精度低。为解决上述问题,提出了一种改进的灰色系统预测移动节点定位技术。改进方法采用跨层设计,利用灰色系统预测移动节点及其相邻节点移动状态和距离来实时地根据自身及相邻节点位置重新成簇进而实现移动节点自定位控制。仿真表明,提出的灰色系统预测模型能够有效地提高了移动节点位置计算精度,在算法时空复杂度和能效上可以实现合理的自定位控制。 The paper proposed an improved node localization technology that uses gray system to predict the mo-bile nodes. The improved method adopts the cross layer design and uses gray system to predict the mobile nodes and the mobile status and distance of neighbor nodes to timely cluster according to the positions of the node itself and its neighbor nodes, thus realizing the self-local, ization control of the mobile node. The simulation shows that the proposed gray system prediction model can effectively improve the calculating accuracy of the mobile node position and realize the rational self-localization control in time-space complexity and efficiency.
作者 丁松阳 梁雪
出处 《计算机仿真》 CSCD 北大核心 2012年第9期136-138,147,共4页 Computer Simulation
关键词 传感器网络节点 节点自定位 灰色系统 距离预测 移动性 Network node of sensor Node self-localization Gray system Distance prediction Mobility
  • 相关文献

参考文献12

  • 1S Krco, et. al. Mobile Network Supported Wireless Sensor Network Services[ C]. Proceedings of the IEEE Internatonal Conference on Mobile Adhoc and Sensor Systems. IEEE Press. 2007 : 1-3.
  • 2Gu Boncheol, et. al. An SDR- Based Wireless Communication Gateway for Vehicle Networks[ C ]. Proceedings of the IEEE Asia -Pacific Services Computing Conference. IEEE Press. 2008:1617 -1622.
  • 3K Eronturk. Hybrid Control of a Mechatronic System : Fuzzy Logic and Grey System Modeling Approach [ J ]. IEEE/ASME Transac- tions on Meehatronies. 2007,12(6) : 703-710.
  • 4Zhang Tao, Yang Kun, Chen Hsiao Hwa. Topology control for service-oriented wireless mesh networks[J]. IEEE Wireless Com- munications, 2009,16 (4) :64- 71.
  • 5T Katabira, Y Iwai. Self-location recognition using azimuth invari- ant features and wearable sensors [ C ]. Proceedings of the IEEE/ RSJ International Conference on Intelligent Robots and Systems. IEEE press. 2009: 4757-4762.
  • 6E Kayacan, Y Oniz, O Kaynak. A Grey System Modeling Ap- proach for Sliding-Mode Control of Antilock Braking System[J]. IEEE Transactions on Industrial Electronics. 2009,56 (8) :3244- 3252.
  • 7J S Li, H C Kao. Distributed K-coverage self-location estimation scheme based on Voronoi diagram[J]. IET Communications. 2010 ,4(2) :167-177.
  • 8J Zhao, et. al. A Two-Stage Online Prediction Method for a Blast Furnace Gas System and Its Application [ J ]. IEEE Transactions on Control Systems Technology. 2011,19(3) : 507-520.
  • 9K S Hwang, C Y Lo, G Y Lee. A Grey Synthesis Approach to Ef- ficient Architecture Design for Temporal Difference Learning [ J ]. IEEE/ASME Transactions on Mechatronics. 2011,16 ( 6 ) : 1136- 1144.
  • 10J A Bamford, C T Putman, V K Mushahwar. Muscle Plasticity in Rat Following Spinal Transection and Chronic Intraspinal Micros- timulation[J]. IEEE Transactions on Neural Systems and Reha- bilitation Engineering, 2011,19( 1 ) :79-83.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部