期刊文献+

计算机网络拥塞的高效控制方法研究 被引量:5

Computer Network Congestion Control Method of High Efficiency
下载PDF
导出
摘要 研究计算机网络的拥塞问题,由于网络拥塞,造成数据包丢失、资源分配效率低,使网络服务质量(Qos)低。针对计算机网络中传输的报文过多出现拥塞时,传统的TCP拥塞控制机制只是模仿交通指挥的原则,对网络拥塞实行正常控制机制处理,不能保证网络服务质量的问题。为了高效解决网络拥塞的问题,提出了一种改进的拥塞控制方法。以传输控制层的网络拥塞控制机制为基础,结合网络层的网络资源队列管理策略共同解决网络拥塞问题。仿真结果表明,这种改进的方法不仅及时解决了网络拥塞的问题,而且保证了计算机网络通信的服务质量,是一种高效地控制网络拥塞问题的方法,为网络性能优化设计提供了依据。 Research the computer network congestion problem. As the network congestion, causing packet loss and low efficiency of resource allocation, and resulting the network low quality of service (Qos). When transmission message appear too much congestion in a computer network, the traditional TCP congestion control mechanism only imitate traffic control principle, to implement a normal network congestion control mechanism processing, can't guar- antee that the network service quality issues. In order to solve the problem of efficient network congestion, this paper put forward an improved congestion control method. To transfer control and the layer of network congestion control mechanism for the foundation, combined with the network layer of network resources queue management strategy to address common network congestion problem. The simulation result indicates that the improved method not only timely solve the network congestion problem, and ensure the computer network communication service quality. This method is a kind of efficient methods to control network congestion problem and provide the basis for network performance op-timization design.
作者 秦光
出处 《计算机仿真》 CSCD 北大核心 2012年第9期154-157,共4页 Computer Simulation
关键词 网络拥塞 服务质量 队列管理 Network congestion Service quality Queue management
  • 相关文献

参考文献7

二级参考文献26

  • 1李建中,郭龙江,张冬冬,王伟平.数据流上的预测聚集查询处理算法[J].软件学报,2005,16(7):1252-1261. 被引量:24
  • 2VAZHKUDAI S, SCHOPF J M. Using regression techniques to predict large data transfers[ J]. International ,Journal of High Performance Computing Applications,2003,17 ( 3 ) :249- 268.
  • 3FLETCHER A K, RANGAN S, GOYAL V K. Estimation from lossy sensor data :jump linear modeling and Kalman filtering [ C ]//Proc of the 3rd International Symposium on Information Processing in Sensor Networks. New York : ACM Press,2004:251 - 258.
  • 4LAZAREVIC A, KANAPADY R. Effective localized regression for damage detection in large complex mechanical structures [ C ]//Proc of Length ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York :ACM Press,2004:450-459.
  • 5IWATA K, NAKASHIMA T, ANAN Y, et al. Improving accuracy of multiple regression analysis for effort prediction model[ C]//Proc of the 5th IEEE/ACIS International Conference on Computer and Information Science and the 1st IEEE/ACIS International Workshop on Component-based Software Engineering, Software Architecture and Reuse. Washington DC : IEEE Computer Society,2006:48-55.
  • 6ILARRI S, WOLFSON O, MENA E,et al. Processing of data streams with prediction functions[ C ]//Proc of the 39th Annual Hawaii International Conference on System Sciences. 2006:4-7.
  • 7LI Tirol, LI Ai-ping, ZOU Peng. Research on prediction models over distributed data streams [ C ]//Proc of WISE 2006 Workshops. Berlin : Springer ,2006:25- 36.
  • 8CHAI D J,KIM E E,JIN Liet al. Prediction of frequent items to one dimensional stream data [ C]//Proc of the 5th International Conference on Computational Science and Applications. Washington DC:IEEE Press ,2007:353- 361.
  • 9FERREIRA C. Gene expression programming:mathematical modeling by an artificial intelligence[ M ]. Portugal: Angra do Hero smo,2001.
  • 10C V Hollot, Vishal Misra, Donald Towsley. Analysisand design of controllers for AQM routers supportingTCP flows[ M]. IEEE Transactions on automatic control, 2002.

共引文献14

同被引文献95

引证文献5

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部