期刊文献+

基于小波域数据的线性ARMAX模型参数估计

Parameter Estimation of Linear ARMAX Model Based on Data of Wavelet Domain
下载PDF
导出
摘要 线性时不变系统离散ARMAX模型在随机噪声情况下影响输出精度。为此提出直接利用小波域的输入输出数据,估计出模型的参数的方法。最小二乘法是时域参数估计的主要方法,随着对小波理论的深入研究,在信号处理方面起着重要的作用。信号经过小波变换后,得到具有时频特征的小波域的信号,方便进行去噪的处理,去噪结果比时域和频域更有效。通过小波最小二乘法估计出模型的参数,与时域最小二乘法的估计参数比较,仿真表明改进方法是可行性和有效性。 For the output data of linear ARMAX model are corrupted with noises, a method of parameter estima-tion was proposed to directly estimate the parameters of the model with the input-output data of wavelet domain. The least squared (LS) method is an important method for parameter estimation in time domain, and with the wavelet transform developed, it plays an important role in signal processing. By means of wavelet transform, the signals have both characteristics of time and frequency and becam signals of wavelet domain. Then the denoising result was more effective than in time domain and in frequency domain. The parameters of the model were estimated by the wavelet least squared method, compare with the least squared method in time domain, the proposed method is feasible and ef-fective.
作者 李振强
出处 《计算机仿真》 CSCD 北大核心 2012年第9期199-202,共4页 Computer Simulation
基金 广西工学院博士基金(11Z06)
关键词 小波变换 参数估计 最小二乘法 Wavelet transform Parameter estimation Least squared method
  • 相关文献

参考文献6

  • 1L Ljung. System identification: Theory for the User. (2nd ed) [ M] Upper Saddle River: Prentice-Hall, 1999.
  • 2R Pintelon, J Sehoukens. System identification. A frequency do- main approach[M]. New York, NY, SA:IEEE Press, 2011.
  • 3P Van Overschee, B De Moor. N4sid: Subspace algorithms for the identification of combined deterministic-stochastic system[J]. Au- tomatic, 1994,30 ( 1 ) :75-93.
  • 4I Daubechies. Orthonormal bases of compactly supported wavelet [J]. Commun on Pure Appl. Math, 1988,91:909-996.
  • 5I Daubechies. Ten Lecture on Wavelets[ M]. Society for Industrial and Applied Mathematics, Philadelphia, PA, 1992.
  • 6AS Willsky, et al. Multiresolution stochastic models and muhiscale estimation algorithms [ C ]. Sixth Multidimensional Signal Process- ing Workshop, 1989.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部