期刊文献+

尺度与颜色不变性图像特征描述 被引量:2

Scale and Color Invariant Image Feature Description
下载PDF
导出
摘要 尺度不变特征变换是目前公认的鲁棒性最强的图像特征描述方法之一,在尺度不变性和几何不变性方面具有较好的特性,但该方法主要适用于灰度图像,对图像颜色的区分能力不强,因此,一些对象可能会因为颜色的不同而被错误的区分.另外,尺度不变特征变换对关键点局部范围内描述子主方向的依赖性非常强,直接决定了匹配的正确率,但是研究表明,主方向分配产生的误差仅有三分之二左右能控制在[-20。,+20。]范围内,因此部分特征会有三分之一的概率因为主方向分配的误差较大而不能正确匹配.针对以上两个问题,本文提出了一种具有颜色和尺度不变性的局部特征描述方法,颜色不变性通过将RGB图像转换到高斯颜色模型下实现,特征描述过程中不再分配主方向,而用局部相对方向,尺度不变性通过构建高斯金子塔实现.实验选取阿姆斯特丹数据集图像进行了测试,结果表明本文方法比传统尺度不变特征变换方法,在特征点的数目、分布均匀性以及匹配精度方面均有所提高. Scale invariant feature transform is considered as one of the most robust image local feature description methods with satisfied scale invariance and geometry invariance.It is mainly designed for gray scale image with little discrimination to image color.Thus,some objects with different color may be misclassified.In addition,SIFT greatly relies on the allocation of descriptor canonical direction around the key point.But studies show that there about two thirds of the allocated canonical direction error is in the range of [-20.,+20.],there about one third of local features may be mismatched for the over large direction error.To these two problems,this paper proposed a local feature descriptor with color and scale invariance,where color invariance is designed by converting the RGB image to Gaussian color model.The canonical direction is not allocated in the process of building descriptors but with local relative direction instead.And the scale invariance is designed by constructing Gaussian pyramid.Experiments were performed on the Amsterdam Library of Object Images dataset and Oxford dataset and the results show the improvement in key points count,distribution and matching precision than scale invariant feature transform.
出处 《小型微型计算机系统》 CSCD 北大核心 2012年第10期2297-2302,共6页 Journal of Chinese Computer Systems
基金 国家"九七三"重点基础研究发展计划项目(2010CB735908)资助 北京市博士后科研活动经费项目资助
关键词 尺度不变特征变换 颜色不变性 尺度不变性 增强型近似最近邻匹配 主方向 scale invariant feature transform color invariance scale invariance enhanced approximate nearest neighbor matching canonical orientation
  • 相关文献

参考文献19

  • 1Ryu J B, Lee C G, Park H H. Formula for harris corner detector [J]. Electronics Letters,2011,47(3) :180-181.
  • 2David G Lowe. Distinctive image features from scale-invariant key- points [ J ]. International Journal of Computer Vision,2004,60 ( 2 ) : 91-110.
  • 3Wu Lei, Hua Xian-sheng, Yu Neng-hai, et al. Flickr distance: a rela- tionship measure for visual concepts [ J ], IEEE Transactions on Pattern Analysis and Machine Intelligence,2012,34 ( 5 ) : 863 -876.
  • 4Krystian Mikolajcayk, Cordelia Schmid. Scale & affine invariant in- terest point detectors [ J ]. International Journal of Computer Vi- sion ,2004,60 ( 1 ) :63-86.
  • 5Schaffalitzky F, Zisserman A. Multi-view matching for unordered image sets [ C ]. Prnceediings of the 7th European Conference on Computer Vision,2002:414-431.
  • 6Edward Rosten, Reid Porter, Tom Drmmond. Faster and better: a machine learning approach to corner detection [ J ]. IEEE Transac- tions on Pattern Analysis and Machine Intelligence, 2010,32 ( 1 ) : 105-119.
  • 7Ethan Rublee, Vincent Rabaud, Kttrt Konolige, Gary Bradski. ORB: an efficient alternatives to SIFF or SURF[C]. Proceedings of IEEEInternational Conference on Computer Vision,2011:2564-2571.
  • 8Michael Calonder, Vincent Lepetit, Pascal Fua. BRIEF: binary ro- bust independent elementary features[C]. Proceedings of European Conference on Computer Vision ,2010:778-792.
  • 9Herbert Bay, Andreas Ess, Tinne Tuytelaars, et al. Speeded-Up ro- bust features ( SURF ) [ C ]. Computer Vision and Image Under- standing ,2008:346-359.
  • 10Mikolajcayk K, Schmid C. An affine invariant interest point detec- tor[ C ]. Proceedings of European Conference on Computer Vision, 2002 : 128-142.

同被引文献17

  • 1董卫军,周明全,耿国华.基于形状-空间关系的图像检索技术[J].计算机工程,2005,31(20):170-172. 被引量:5
  • 2Azad P, Asfour T, Dillmann R. Combining Harris Interest Points and the SIFT Descriptor for Fast Scale-Invariant Object Recognition[C]//Proceedings of IEEE/RSJ International Con- ference on Intelligent Robots and Systems. 2009:4275-4280.
  • 3Rassem T H, Khoo 13 E. Object Class Recognition using Combi-nation of Color SIFT Descriptors[C]ffProceedings of IEEE Ima- ging Systems and Techniques (IST). 2011 290-295.
  • 4Geng Cong,Jiang Xu-dong. SIFT Features for Face Recognition [C] // Proceedings of IEEE International Conference on Com- puter Science and Information Technology (ICCSIT). 2009: 598- 6O2.
  • 5Bastanlar Y, Temizel A, Yardimci Y. Improved SIFT matching for image pairs with scale difference [J]. Electronics Letters, 2010,46(5) : 1-2.
  • 6Huang Lei,Li Zhen. Feature-based image registration using the shape context [J]. Remote Sensing:,2010,31(8) 2169-2177.
  • 7Geusebroek J-M, van den Boomgaard R, Smeulders A W M. Color Invariance[C] // Proceedings of IEEE Transactions on Pattern Analysis and Machine Intelligence. 2001 : 1338-1350.
  • 8Wold H. Path models with latent variables The NIPALS ap- proach [C] // Proceedings of Quantitative Sociology.. Interna- tional Perspectives on Mathematical and Statistical Model Buil- ding. 1975 : 307-357.
  • 9Salve S G,Jondhale K C. Shape Matching and Object Recogni- tion Using Shape Contexts[C]//Proceedings of IEEE Computer Science and Information Technology (ICCSIT), 2010:471-474.
  • 10Salve S G, Jondhale K C. Shape Matching and Object Recogni tion Using Shape Contexts[C]//Proceedings of IEEE lnterna tional Conference on Computer Science and Information Teeh nology (ICCSIT). 2010 : 471-474.

引证文献2

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部