期刊文献+

视觉属性学习应用研究

Application Research of Visual Attribute Learning
下载PDF
导出
摘要 视觉属性能够展现人们识别事物时所定义的语义概念,但现有的视觉识别工作往往忽略了属性在分类器设计中能作为中间媒介层的作用.本文给出一种将属性和事物类别同时用于构建分类器的方法.分析了传统多类分类器、直接类别相关模型、间接属性预测模型、直接属性预测模型的特点.在动物和室外场景数据集上的实验证明,利用属性进行分类器学习对于提高传统多目标分类和迁移学习的性能都具有很好的帮助. Visual attributes expose human-defined semantics to object recognition models,but existing work largely restricts their influence to mid-level cues during classifier training.A kind of classifier constructed by both attributes and categories is put forward in this paper.The paper analysis the traditional multi-class classifier,direct related categories model,indirect attribute prediction model and direct attribute prediction.Experiments in animal and outdoor scenes data set shows that attributes have a good help to improve the performance of traditional multi target classification and transfer learning.
出处 《小型微型计算机系统》 CSCD 北大核心 2012年第10期2311-2314,共4页 Journal of Chinese Computer Systems
基金 国家自然科学基金项目(60673190)资助 江苏省自然科学基金项目(BK2009199)资助 中央高校基本科研业务费专项基金项目资助 江苏省普通高校研究生科研创新计划项目(CXZZ11_0216)资助 江苏省省属高校自然科学研究项目(11KJD520004)资助
关键词 视觉属性 属性学习 多目标分类 迁移学习 visual attributes attribute learning multi target classification transfer learning
  • 相关文献

参考文献12

  • 1Farhadi A,Endrcs I,Hoicm D,ct al. Describing objects by their at- tributes [ C ], Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition,2009:1778-1785.
  • 2Fcrrari V,Zisserman A. Learning visual attributes [ C ]. 21st Annual Conference on Neural Information Processing Systems, Vancouver, BC, Canada, 2007.
  • 3Earl R Babbie. The practice of social research[ M]. Beijing: Tsing- hua University Press,2009.
  • 4Stark M, Gocscle M, Schiele B. A shape-based object class model for knowledge transfer[ C]. Proceedings of the IEEE International Conference on Computer Vision, 2009: 373-380.
  • 5Torralba A, Murphy K. Sharing visual features for multiclass and multiview object detection [ C ]. Proceedings of the IEEE Transac- tions on Pattern Analysis and Machine Intelligcncc,2007:854-869.
  • 6Wang G, Forsyth D. Joint learning of visual attributes object clas- ses and visual salience[ C]. Proceedings of the IEEE International Conference on Computer Vision, 2009: 537-544.
  • 7Zhang Wei-yu, Praveen Srinivasan, Shi Jian-bo. Discriminative image warping with attribute flow [ C ]. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Rec- ognition, 2011: 2393-2400.
  • 8Yu Xiao-dong, Yiannis Aloimonos. Attribute-based transfer learn- ing for object categorization with zero or one training example[ C]. Proceedings of the 11 th European Conference on Computer Vision, 2010: 127-140.
  • 9Mark Steyvers, Padhraic Smyth, Michal Rosen-Zvi, et al. Proba- bilisfic author-topic models for information discovery [ C ]. Pro- ceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2004: 306-315.
  • 10Wang Y, Mori G. A discriminative latent model of object classes and attributes [ C J. Proceedings of the ! 1 th European Conference on Computer Vision, 2010: 155-168.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部