期刊文献+

基于数值模拟和统计分析及智能优化的风速预报系统 被引量:9

Program of Wind Speed Prediction Based on Numerical Simulation with Intelligent Optimization Algorithm
下载PDF
导出
摘要 风速预报是风力发电研究中的关键问题,也是一个十分困难的问题,其预测、评估技术还有待进一步提高。在预测短期风力(提前48~72h对每小时的风速进行预测)时,通常采用数值天气预报模型进行预测。然而,初始扰动和模式物理过程的不确定性会影响气象数值预报的精度。将为数值天气预报模式提出一种新的后处理优化方法作为主要的思路,利用数据挖掘得到的关联规则来优化气象数值预报的结果,在中尺度模式WRF对风电场风速进行预报的基础上,将模式预测与统计分析及智能优化算法相结合,针对中国风电场的气候特征,利用一种新的修正模式误差的方法,极大地提高了风电场风速预报精度,提出了适合中国风力发电场的有效风速预报系统方案。 Wind speed prediction is a key factor for wind farm planning and the operational planning of power grids; accurate forecasting of wind speed can minimize the scheduling errors and in turn increase the reliability of the electric power grid and reduce the power market ancillary service costs. Based on the mesoscale model WRF(Weather Research and Forcasting) for wind speed forecasting, combined with model prediction and statistical analysis using an intelligent optimization algorithm we have greatly improved the forecasting precision of wind speed, employing a new method to correct the model errors. In view of the climatic feature of Chinese wind farms, the wind speed prediction program in China has been enhanced.
出处 《气候与环境研究》 CSCD 北大核心 2012年第5期646-658,共13页 Climatic and Environmental Research
基金 中国科学院战略性先导科技专项XDA01020304
关键词 数值模拟 统计分析 智能优化 风速预报 numerical simulation, statistical analysis, intelligent optimization, wind speed prediction
  • 相关文献

参考文献13

  • 1Alexiadis M C, Dokopoulos P S, Sahsamanoglou H S. 1999. Wind speed and power forecasting based on spatial correlation models [J]. IEEE Transactions on Energy Conversion, 14 (3): 836-842.
  • 2Barbounis T G, Theochairs J B, Alexiadis M C, et al. 2006. Long-term wind speed and power forecasting using local recurrent Neural Network Models [J]. IEEE Transactions on Energy Conversion, 21 (1): 273-284.
  • 3Bossanyi E A. 1985. Short-term wind prediction using Kalman filters [J]. Wind Engineering, 9 (1): 1-8.
  • 4Box G E P, Jenkins G M. 1976. Time Series Analysis: Forecasting and Control [M]. San Francisco: Holden-Day, 101-120.
  • 5Carolin M M, Fernandez E. 2007. Analysis of wind power generation and prediction using ANN: A case study [J]. Renewable Energy, 32:814-831.
  • 6雷亚洲,王伟胜,印永华,戴慧珠.风电对电力系统运行的价值分析[J].电网技术,2002,26(5):10-14. 被引量:139
  • 7刘永前,韩爽,胡永生.风电场出力短期预报研究综述[J].现代电力,2007,24(5):6-11. 被引量:71
  • 8Pinson P, Siebert N, Kariniotakis G. 2003. Forecasting of Regional Wind Generation by a Dynamic Fuzzy-Neural Networks Based Up scaling Approach [C]. Madrid: European Wind Energy Conference & Exhibition EWEC, 2003.
  • 9孙川永,陶树旺,罗勇,王式功.高分辨率中尺度数值模式在风电场风速预报中的应用[J].太阳能学报,2009,30(8):1097-1099. 被引量:25
  • 10王晓兰,李辉.风电场输出功率年度预测中有效风速预测研究[J].中国电机工程学报,2010,30(8):117-122. 被引量:30

二级参考文献76

共引文献777

同被引文献211

引证文献9

二级引证文献73

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部