期刊文献+

次微分的可变分研究

Variational study on the subdifferentiations
下载PDF
导出
摘要 研究了Banach空间中下半连续函数的Frechet次微分、Proximel次微分、Q-次微分和E-次微分,得到了这些次微分是可变分的一些充分条件.其结果改进和推广了相关的一些研究结果. In this paper, suhdifferentiations of Frechet, Proximel and Q- subdifferentiations and E- subdifferentiations in Banach spaces are studied. It is obtained that some sufficient conditions about the subdifferentiations are variational. The present results improve and extend some known results in the literature.
出处 《周口师范学院学报》 CAS 2012年第5期32-34,共3页 Journal of Zhoukou Normal University
基金 四川省教育厅重点课题基金资助项目(No.08ZA159)
关键词 Frechet次微分 Proximel次微分 Q-次微分 E-次微分 变分型 Frechet subdifferential Proximel subdifferential Q-subdifferential E-subdifferential variational
  • 相关文献

参考文献8

  • 1ENOT J P. Variational Subdifferential for Quasiconvex FunctionsQJ. Optim Theory Appl, 2001(1) : 165 — 171.
  • 2郭兴明.下半连续函数的Proximal-次微分与广义中值定理[J].数学物理学报(A辑),1998,18(3):324-329. 被引量:4
  • 3MARTINEZ-LEGAZ J E,SACH P H. A New Subdifferential in Quasiconvex Analysis[J]. Conv Anal,1999 (1):1 -11.
  • 4THIBAULT L. Sequential Convex Subdifferential Calculus and Sequential Lagrange Multipliers[J]. Soci Appl Math,1997(4): 1434 - 1444.
  • 5李成林,孔维丽,黄辉.E凸函数的次微分[J].云南大学学报(自然科学版),2006,28(5):369-373. 被引量:7
  • 6GEOFFRO M,LASSONDE Y M. Stability of Slopes and Subdifferentials[J]. Set-Valued Anal, 2003(11): 257 -271.
  • 7CARRASCO-OLVER D, FLORES-BAZAN A F. On the Representation of Approximate Subdifferetial for a Class of Generalized Convex Functions[J]. Set-Valued Anal, 2005,13 : 151 - 166.
  • 8MICHEL P, PENOT J P. A Generalized Derivative for Calm and Stable Functions[J]. Differ Integ Equa, 1992(5): 433 -454.

二级参考文献10

  • 1邵远夫,李成林.Hilbert空间中函数和的次微分规则及应用[J].云南大学学报(自然科学版),2004,26(6):475-478. 被引量:6
  • 2郭兴明.函数的次微分性质[J].应用数学和力学,1996,17(5):427-432. 被引量:2
  • 3YOUNESS E A. E-convex sets, E-convex functions, and E-convex programming[J }. Journal of Optimization Theory and Applications, 1999, 102 (2) : 439-450.
  • 4CLARKE F H, LEDYAEV Y S, STEM R J, et al. Nonsmooth analysis and control theory[M]. New York: Springer-Verlag,1998.
  • 5IOFFE A D. Approximate subdifferentials and applications. Ⅰ: The finite dimensional theory[J ]. Transactions of the American Mathematical Society, 1984, 281 (2) : 389-416.
  • 6IOFFE A D. Proximal analysis and approximate subdifferentials[J]. Journal of London Mathematical Society, 1990, 41 ( 1 ) :175-192.
  • 7DEVILLE R, HADDAD E M E. The subdifferential of the sum of two functions in banach spaces[J]. Ⅰ First Order Case Convex Analysis, 1996, 3 (3) : 295 -308.
  • 8FABIAN M. Gateaux differentiability of convex functions and topology weak asplund spaces[ M]. New York: J Wiley and Sons, Interscience, 1997.
  • 9IOFFE A D. Nonsmooth analysis: differential calculus of nondifferentiable mappings[J ]. Transactions of the American Mathematical Society, 1981, 266(1 ) : 1-56.
  • 10杨富春,何青海,聂彩仁.β-光滑Banach空间中一类数学规划问题的最优必要条件[J].应用泛函分析学报,2003,5(3):265-270. 被引量:3

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部