期刊文献+

基于贝叶斯一稀疏约束正则化方法的地震波形反演 被引量:2

Seismic waveform inversion based on Bayesian-sparsity constraint regularization method
下载PDF
导出
摘要 将稀疏约束正则化方法应用于地震波形反演问题.为了减弱对稀疏约束项的光滑性要求,引入贝叶斯推断,产生一组收敛于后验分布的采样点.通过数值算例记录了采样点的条件期望、方差、置信区间等具有统计意义的结果.数值结果表明,在没有光滑性的要求下,稀疏约束正则化方法对孔洞模型和分层模型中的介质边缘有良好的识别能力.特别地,当减少观测数据时,稀疏约束正则化方法仍能获得较好的反演结果. The regularization method is applied with sparsity constraints to seis- mic waveform inversion in this paper. To weaken the smoothness requirement of the sparsity constraints, the Bayesian inference is introduced and a series of samplings which satisfies the posterior distribution are generated. In numerical examples, sta- tistically significant results of samplings such as conditional expectation, variance and confidence interval are recorded. Numerical results are presented to illustrate that, without requirement of smoothness, the regularization method with sparsity constraints has a good ability to identify the edge of the media with cavity and lay- ered models. Especially, when the observation data are reduced, the regularization method with sparsity constraints can still provide reasonable inversion results.
出处 《应用数学与计算数学学报》 2012年第3期285-297,共13页 Communication on Applied Mathematics and Computation
基金 国家自然科学基金资助项目(41074088)
关键词 地震波形反演 稀疏约束正则化 贝叶斯推断 马尔可夫链蒙特卡罗(MCMC)方法 seismic waveform inversion regularization with sparsity constraints Bayesian inference Markov chain Monte Carlo (MCMC) method
  • 相关文献

参考文献16

  • 1Engl H W, Hanke M, Neubauer A. Regularization of Inverse Problems [M]. Dordrecht: Kluwer Academic Publishers, 1996.
  • 2Ramlau R. Regularization properties of Tikhonov regularization with sparsity constraints [J]. Electron. Trans. Numer. Anal., 2008, 30: 54-74.
  • 3Acar R, Vogel C R. Analysis of bounded variation penalty methods for ill-posed problems [J]. Inverse Problems, 1994, 10(6): 1217-1229.
  • 4陈勇,韩波,肖龙,陈小宏.多尺度全变分法及其在时移地震中的应用[J].地球物理学报,2010,53(8):1883-1892. 被引量:11
  • 5Candes E, Romberg J, Tao T. Stable signal recovery from incomplete and inaccurate measurements [J]. Pure Appl. Math., 2006, 59: 1207-1223.
  • 6Donoho D L. Compressed sensing [J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306.
  • 7Loris I, Nolet G, Daubechies I, Dahlen F A. Tomographic inversion using/1-norm regularization of wavelet coefficients [J]. Geophysical Journal International, 2007, 1: 359-370.
  • 8Loris I, Douma H, Nolet G, Daubechies I, Regone C. Nonlinear regularization techniques for seismic tomography [J]. Comput. Physics, 2010, 229: 890-905.
  • 9Jin B, Khan T, Maass P. A reconstruction algorithm for electrical impedance tomography based on sparsity regularization [J]. Int. J. Numer. Meth. Engng., 2012, 89(3): 337-353.
  • 10Cao J J, Wang Y F, Zhao J T, Yang C C. A review on restoration of seismic wavefields based on regularization and compressive sensing [J]. Inverse Problems in Science and Engineering, 2011, 19(5): 679-704.

二级参考文献12

共引文献10

同被引文献7

引证文献2

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部