摘要
在托卡马克等离子体环向转动的马赫数为常数的情况下,对于一定的等离子体压强和电流分布,平衡方程可以化为Grad-Shafranov-Helmholtz方程的形式,其中a1、a2与α的值与没有环向转动的情形均具有相同的物理意义.它可以形成单磁轴的传统嵌套磁面位形,也可以形成多磁轴的电流反向平衡位形.
With the Mach numbers of the equilibrium toroidal rotation chosen to be con- stants,the equilibrium equation with toroidal rotation can be reduced to be the Grad- Shafranov-Helmhohz equation. The physical meaning of the values of aI and a2 are the same as in tokamks without toroidal rotation. But the relation between the radial gradient of the profile of the current density and the type of the equilibrium configuration is different.
出处
《南华大学学报(自然科学版)》
2012年第2期1-3,共3页
Journal of University of South China:Science and Technology
基金
国家自然科学基金资助项目(11075073
11105071
41104094)
关键词
环向转动
平衡方程
马赫数
toroidal rotation
equilibrium equation
Mach number