期刊文献+

基于RBF神经网络的电子秤非线性误差补偿 被引量:1

Compensation of flectronic scale's nonlinear error based on RBF neural netwrok
下载PDF
导出
摘要 称重传感器、秤盘机械结构的非线性环节影响了电子秤称重结果的准确度。本文分析了电子秤的非线性误差来源与误差机理,在此基础上利用径向基函数神经网络(RBFNN)构建了一种电子秤非线性误差补偿网络,完成了电子秤的非线性校正。经现场检测表明,采用这种方法补偿后的电子秤称重误差小于国家标准《JJG 555-1996非自动秤通用检定规程》规定的中级秤允许误差,提高了称重准确度。 The nonlinear errors derived from load cell and scale pan are resulted in the weighing errors of electronic scale. In this paper, the source and the mechanics of nonlinear errors in electronic scale are expounded. A compensation method for electronic scale' s nonlinear error based on radial basis function neural netwok(RBFNN) is designed, and then the nonlinear error is corrected. The experimental results are show that the weighing error of the electronic scale with this proposed method is less than the permissible error defined by the " JJG555-1996 General Verification Regulation for Nonautomatic Weighing Instrument", and its weighing result is more accurate.
作者 杨艳华
出处 《仪器仪表用户》 2012年第4期67-70,共4页 Instrumentation
关键词 电子秤 非线性误差 补偿 径向基函数神经网络 electronic scale nonlinear error compensation radial basis function neural network
  • 相关文献

参考文献10

二级参考文献32

共引文献80

同被引文献3

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部