期刊文献+

SAR图像相干斑抑制中的像素相关性测量 被引量:3

The Pixel-similarity Measurement in SAR Image Despeckling
下载PDF
导出
摘要 像素相关性(Pixel Relativity,PR)测量是权重平均相干斑抑制算法中的关键技术,该文从3个方面对SAR图像中的PR模型进行了研究。首先,该文论述了比值PR模型的合理性,提出了两种新的比值PR模型(对数高斯模型与像素相似概率模型),并将SAR图像概率密度函数与比值概率密度函数转化为比值PR模型;然后,为了对4种PR模型应用于相干斑抑制的性能进行比较,设计了基于PR的权重最大似然滤波器;最后,针对相关性最大值位置不为1的PR模型存在的辐射保持能力差的问题,提出了模型最大值位置校正的方法。理论分析与实验表明了提出模型及最大值位置校正方法的有效性。 The Pixel Relativity (PR) measurement of SAR image, which is the key of the despeckling techniques based on weighted average, is researched in three aspects. Firstly, the rationality of ratio PR model is expounded, and two new ratio PR models, which are the LOG-domain Gaussian model and the pixel similarity probability model, are proposed. Meanwhile, the Probability Density Function (PDF) of SAR image and the PDF of the ratio between pixels are transformed into ratio PR models. Then, in order to evaluate the four ratio PR models, the weighted maximum likelihood filters are designed using the PR. Finally, a novel method, performed by calibrating the maximum location of the PR model, is introduced to improve the radiation preservation of those models whose maximum do not locate at 1. The effectiveness of the two proposed PR models and the approach to calibrate the maximum location of the PR model, are indicated by the theoretical analysis and experimental comparison.
出处 《雷达学报(中英文)》 2012年第3期301-308,共8页 Journal of Radars
基金 内蒙古自治区高等学校科学技术研究项目(MJZZ11069) 内蒙古自治区自然科学基金项目(2011BS0904)资助课题
关键词 SAR图像 相干斑抑制 像素相关性 比值 SAR image Despeckling Pixel Relativity (PR) Ratio
  • 相关文献

参考文献10

  • 1贾建,陈莉.基于双变量模型和非下采样Contourlet变换的SAR图像相干斑抑制[J].电子与信息学报,2011,33(5):1088-1094. 被引量:14
  • 2W. G. Zhang,Q. Zhang,C. S. Yang.Improved bilateral filtering for SAR image despeckling[].Electronics Letters.2011
  • 3Feng H X,Hou B,Gong M G.SAR image despeckling based on local homogeneous region segmentation by using pixel relativity measurement[].IEEE Transactions on Geoscience and Remote Sensing.2011
  • 4J S Lee,I Jurkevich,P Dewalle,et al.Speckle filtering of synthetic aperture radar images: A review[].Remote Sensing Reviews.1994
  • 5Molina D E,et al.Gibbs Random field models formodel-based despeckling of SAR images[].IEEE Geoscienceand Remote Sensing Letters.2010
  • 6Tomasi C,Manduchi R.Bilateral filtering for gray and color images[].Proceedings of the IEEE International Conference on Computer Vision.1998
  • 7Buades A,Coll B,Morel JM.A non-local algorithm for image denoising[].IEEE Computer Society International Conference on Computer Vision and Pattern Recognition.2005
  • 8Oliver C,Quegan S.Understanding Synthetic Aperture Radar Images[]..1998
  • 9Xie L H,Pierce,Ulab F.Statistical properties of logarithmically transformed speckle[].IEEE TransGeoseience and Remote Sensing.2002
  • 10Deledalle C,Denis L,Tupin F.Iterative weighted maximum likelihood denoising with probabilistic patch-based weights[].IEEE Transactions on Image Processing.2009

二级参考文献12

  • 1Cunha A L,Zhou Jian ping,and Do M N.The nonsubsampled Contourlet transform:theory,design,and applications[J].IEEE Transactions on Image Processing,2006,15(10):3089-3101.
  • 2Dai M,Peng Cheng,and Chan A K.Bayesian wavelet shrinkage with edge detection for SAR image despeckling[J].IEEE Transactions on Geoscience and Remote Sensing,2004,42(8):1642-1648.
  • 3Sendur L and Selesnick I W.Bivariate shrinkage functions for wavelet-based denoising exploiting interscale dependency[J].IEEE Transactions on Signal Processing,2002,50(11):2744-2756.
  • 4Oliver C and Quegan S.Understanding Synthetic Aperture Radar Images[M].Norwood,MA:Artech House,1998:158-186.
  • 5Lopes A,Nezry E,and Touzi R,et al..Maximum a posteriori speckle filtering and first order texture models in SAR images[C].Proceedings of IEEE International Geoscience and Remote Sensing Symposium'90.Washington,DC,1990:2409-2412.
  • 6Buemi M E,Jacobo J,and Mejail M.SAR image processing using adaptive stack filter[J].Pattern Recognition Letters,2010,31(4):307-314.
  • 7Mehdi Nasr and Hossein Nezamabadi-pour.Image denoising in the wavelet domain using a new adaptive thresholding function[J].Neurocomputing,2009,72(4-6):1012-1025.
  • 8Do M N and Vetterli M.The contourlet transform:an efficient directional multiresolution image representation[J].IEEE Transactions on Image Processing,2005,14(12):2091-2106.
  • 9Ni W,Guo B L,and Liu Y.Speckle reduction algorithm for SAR images using contourlet transform[J].Journal of Information and Computing Science,2006,3(1):83-94.
  • 10沙宇恒,丛琳,孙强,焦李成.基于Contourlet域HMT模型的SAR图像相干斑抑制[J].红外与毫米波学报,2009,28(1):66-71. 被引量:7

共引文献13

同被引文献8

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部