期刊文献+

压缩比对大应变挤出切削过程影响的有限元分析 被引量:2

Finite Element Analysis on Influence of Different Compression Ratio to Extrusion Machining in Severe Plastic Deformation
下载PDF
导出
摘要 介绍纳米晶材料的加工前景和纳米晶带材的一种制备方法,即大应变挤出切削。建立了基于大变形有限元理论的平面应变正交切削有限元仿真模型。采用Deform对切削过程进行仿真,研究了切削过程中压缩比对切削力、等效应力、等效应变和切削温度的影响,旨在探索大应变挤出切削过程中压缩比对切削过程的影响规律,优选出合理的切削参数。 First, extrusion machining in severe plastic deformation which is regarded as a novel approach to manufacture nanostructure materials is introduced. Then, a large strain model describing the extrusion machining is established. The effects of the compression ratio on the cutting forces, equivalent stress, equivalent strain and tem- perature are investigated by finite element method. At last, a reasonable cutting parameter is selected according to the finite element analysis.
作者 许统奎
出处 《科学技术与工程》 北大核心 2012年第25期6428-6432,共5页 Science Technology and Engineering
关键词 挤出切削 有限元分析Deform 压缩比 extrusion machiningfinite element analysis deformcompression ratio
  • 相关文献

参考文献8

  • 1Glieiter H. Nanostructured materials : basic concepts and microstruc- ture. Acta Mater, 2000 ;48 : 1-29.
  • 2兰姣霞,洪友士.纳米晶材料变形行为的微观力学分析[J].固体力学学报,2010,31(1):1-7. 被引量:2
  • 3Sevier M, Yang H T Y, Lee S, et al. Plastic deformation by machi- ning characterized by finite element simulation. Metallurgical and ma- terials transactions B, 2007 ;38B : 927-938.
  • 4Deng J, Xia W, Li C, et al. Ultrafine Grained Material Produced by Machining. Materials and Manufacturing Processes, 2010 ; 25 ( 6 ) : 355-359.
  • 5吴春凌,叶邦彦.制造纳米材料的新颖方法——切削(英文)[J].科学技术与工程,2009,9(19):5783-5787. 被引量:2
  • 6李诚,邓文君,魏兴钊.切削加工中的大塑性变形与超细晶形成研究[J].金属热处理,2008,33(8):133-137. 被引量:6
  • 7Johnson G R, Cook W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures. Proceedings of Seventh International Symposium on BaUistics, 1983 : 541.
  • 8Scientific Forming Technologies Corporation. DEFORM Design Envi- ronment for Forming DEFORM -3D Version 3.0 Users Manual, 1999; (1) :1-165.

二级参考文献34

  • 1Swaminathan S, Swanson C, Brown T L, et al. Microstructured refinenmet in steels by machining. Materails Research Society. 2004 ; 821:951--956.
  • 2Shankar M R, Chandraseker S, Alexander H K, etal. Microstructure and stability of nanocrystalline aluminum 6061 created by large strain machining. Acta Materialia,2005 ;53 : 4781--4793.
  • 3Saldana C, Yang P, Mann J B, etal. Micro-scale components from high-soength nanostructurecl alloys. Materials Science and Engineering A,2005 ;503 : 172--175.
  • 4Gleiter H: Nanocrystalline materials. Progress in Materials Science. 1989 ;33(4) : 223--315.
  • 5Nieman G W, Weertman J R , Siegel R W . Nanostructured materials. Mechanical Behavior of Nanocrystalline Metals. 1992 ; 1 ( 2 ) :185--190.
  • 6Birringer R. Nanocrystalline materials. Materials Science and Engineering A,1989;37(9) :33-43.
  • 7Brown T L, Swanminathan S, Chandrasekar S,et al. Low-cost manufactureing process for nanostructured metals and alloys. Materials Research Society Rapid Communications, 2002 ;17(10) :2484--2488.
  • 8Seongeyl L, Hawang J, Shankar M R, etal. Large strain deformation field in machining. Metallurgical and Materials Transactions, 2006; 37 : 1633--1643.
  • 9Swaminathan S, Shankar M R, Lee S, et al. Large strain deformation and ultrafine grained materials by machining. Materials Science and Engineering A ,2005 ;410-411,358--363.
  • 10Hill R. The Mathematical Theory of Plasticity[M]. London: Oxford University Press, 1950:34-90.

共引文献7

同被引文献7

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部