摘要
We demonstrate a tunable wavelength-locked seed laser source with high-frequency stability to realize the precise measurements of global atmospheric wind field. An Nd:YAG laser at 1 064 nm is used as the master laser (ML). Its frequency is locked to a confocal Fabry-Perot interferometer by using the Pound-Drever- Hall method, which ensures the peak-to-peak value of its frequency drifts less than 180 kHz over 2 h. Another Nd:YAG laser at 1 064 nm, as the slave laser, is offset-locked to the above ML using optical phase locked loop, retaining virtually the same absolute frequency stability as the ML. The tunable ranges of the frequency differences between two lasers are up to 3 OHz, and the tuning step length was an arbitrary integral multiple of 200 kHz. The researched seed laser source is compact and robust, which can well satisfy the requirement of the Doppler wind lidar.
We demonstrate a tunable wavelength-locked seed laser source with high-frequency stability to realize the precise measurements of global atmospheric wind field. An Nd:YAG laser at 1 064 nm is used as the master laser (ML). Its frequency is locked to a confocal Fabry-Perot interferometer by using the Pound-Drever- Hall method, which ensures the peak-to-peak value of its frequency drifts less than 180 kHz over 2 h. Another Nd:YAG laser at 1 064 nm, as the slave laser, is offset-locked to the above ML using optical phase locked loop, retaining virtually the same absolute frequency stability as the ML. The tunable ranges of the frequency differences between two lasers are up to 3 OHz, and the tuning step length was an arbitrary integral multiple of 200 kHz. The researched seed laser source is compact and robust, which can well satisfy the requirement of the Doppler wind lidar.
基金
supported by the National Natural Science Foundation of China (Nos. 61108028 and 61178031)
Project of Shandong Academy of Information and Communication Technology Introducing High Level Personals from Home and Abroad