期刊文献+

随机供给与随机需求的交通网络设计模型 被引量:5

Design model of traffic network based on stochastic supply and stochastic demand
原文传递
导出
摘要 为了改进以确定供给与确定需求为基础的传统交通网络设计方案,根据双层规划理论与交通分配理论,建立了基于随机供给与随机需求的离散交通网络设计模型。将Monte Carlo模拟、遗传算法和交通分配算法应用于模型求解过程,并应用Nguyen-Dupuis交通网络求解模型。计算结果表明:当OD需求增大时,总走行时间增大;当建设预算增大时,总走行时间下降;当供给与需求均不确定时,增加建设预算对降低总走行时间的效果更加明显;在不同工况下,总走行时间最大值为1.69×105 h,最小值为8.89×104 h;当OD需求均值为350veh.h-1,建设预算从1 000万元增大到1 500万元,且供给确定时,总走行时间下降3.47%。供给与需求的不确定程度对交通网络的设计方案具有重要影响。 In order to improve the traditional design method of traffic network based on definitive supply and definitive demand, the hi-level programming theory and traffic assignment theory were used, and the design model of traffic network based on stochastic supply and stochastic demand was set up. The Monte Carlo simulation, genetic algorithm and traffic assignment algorithm were applied in model solving process, and Nguyen-Dupuis traffic network was used to solve the model. Calculation result indicates that when the OD demand increases, the total travel time increases. When the construction budget increases, the total travel time decreases. When both supply and demand are uncertain, the effect of increasing construction budget on decreasing total travel time is more significant. Under different conditions, the maximum value of total travel time is 1.69 ×10^5 h, and the minimum value is 8.89 ×10^4 h. When the average value of OD demand is 350 veh ·h^-1 and the construction budget increases from 10 million yuan to 15 million yuan, the total travel time decreases by 3.47% under certain supply. The uncertain degrees of stochastic supply and stochastic demand have important influence on the design method of trafficnetwork. 9 tabs, 17 figs, 19 refs.
出处 《交通运输工程学报》 EI CSCD 北大核心 2012年第4期67-74,共8页 Journal of Traffic and Transportation Engineering
基金 国家863计划项目(2007AA11Z233) 中央高校基本科研业务费专项资金项目(CHD2010JC095 CHD2012JC062)
关键词 交通规划 离散交通网络 不确定性理论 双层规划理论 蒙特卡洛模拟 遗传算法 traffic planning discrete traffic network uncertain theory hi-level programmingtheory Monte Carlo simulation genetic algorithm
  • 相关文献

参考文献19

  • 1YANG Hai, BELL M G H. Models and algorithms for road network design: a review and some new developments[J]. Transport Reviews, 1998, 18(3): 257-278.
  • 2WONG S C, YANG Hal. Reserve capacity for a signal con trolled road network[J]. Transportation Research Part B: Methodological, 1997, 31(5): 397-402.
  • 3许良,高自友.基于连通可靠性的城市道路交通离散网络设计问题[J].燕山大学学报,2007,31(2):159-163. 被引量:9
  • 4刘娟娟,范炳全,祝炳发.双层规划在城市交通污染控制中的一个应用[J].管理工程学报,2005,19(4):87-90. 被引量:9
  • 5MENG Qiang, YANG Hal. Benefit distribution and equity in road network design[J]. Transportation Research Part B: Methodological, 2002, 36(1) : 19-35.
  • 6FRIESZ T L, ANANDALINGAM G, MEHTA N J, et al. The multiobjective equilibrium network design problem revisited: a simulated annealing approach[J]. European Journal of Operational Research, 1993, 65(1): 44-57.
  • 7TZENG G H, TSAUR S H. Application of multiple criteria decision making for network improvement plan model[J]. Journal of Advanced Transportation, 1997, 31(1): 48-74.
  • 8UKKUSUI S V, MATHEW T V, WALLER S T. Robust transportation network design under demand uncertainty[J]. Computer-Aided Civil and Infrastructure Engineering, 2007, 22(1) : 6-18.
  • 9YIN Ya-feng, MADANAT S M, I.U Xiao yun. Robust improvement schemes for road networks under demand uncertainty[J]. European Journal of Operational Research, 2009, 198(2): 470-479.
  • 10WATLING D. A second order stochastic network equilibrium model, I: theoretical foundation[J]. Transportation Science, 2002, 36(2): 149-183.

二级参考文献27

  • 1Birge J R,Louveaux Fjntroduction to Stochastic Programming[M].New York:Springer,1997.
  • 2Danztig G.Linear Programming under Uncertainty[J].Management Science,1995,1(3).
  • 3Liu Haixu, Hu Ji, Pu Yun.Continuous Network Desigo Problem Considering Stochastic denmnd[J].In 1st International Conference on Transportation Engineering, Chengdu,2007.
  • 4Sun Yao, Turnquist M A.Investment in Transportation Network Capacity under Uncertainty:simulated Annealing Approach [J].Transportation Research Record,2007,2039.
  • 5Ukkusui S V, Mathew T V,Waller S T.Robust Transportation Network Design under Demand Uneertainty[J].Computer-Aided Civil and Infrastructure Engineering,2007,22.
  • 6Partriksson M.Robust Bi-Level Optimization Models in Transportation Science[J].Philosophical Transactions of the Royal Society A,2008,366.
  • 7Tomlin J A.A Mathematical Programming Model for the Combined Distribution-assignment of traffic[J].Transportation Science,1971,5(2).
  • 8Florian M, Nguyen S, Ferland J.On the Combined Distribution assignment of traffic[J].Transportation Science,1975,9(1).
  • 9Evans,S P.Derivation and Analysis of Some Models for Combining Trip Distribution and Assignment[J].Transportation research, 1976,10(1).
  • 10Huang H J, Lam W H K. Modified Evans' Algorithms for Solving the Combined Trip Distribution and Assignment Problem[J]. Transportation Research B,1992,26(4).

共引文献18

同被引文献31

引证文献5

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部