期刊文献+

运动车辆检测与跟踪方法 被引量:5

Detecting and tracking method of moving vehicle
原文传递
导出
摘要 为提高城市智能交通综合管理能力,提出了基于视频分析的运动车辆检测与跟踪方法。在城市交通干道路面环境中,根据运动目标与道路背景统计特性的差异,基于贝叶斯概率准则,提出一个自适应背景更新算法,检测分离运动车辆目标前景,采用卡尔曼滤波器实现对视频序列中车辆目标的运动检测与实时跟踪,并对在重庆某交通干道的交通流视频进行检测。试验结果表明:该方法在常规视频分辨率下能实现实时处理视频,平均检测准确率为94%,具有较好的实时性与鲁棒性,能够实现城市交通环境中各类运动车辆的检测与跟踪。 In order to improve the comprehensive management ability of intelligent transportation systems in cities, a detecting and tracking method of moving vehicle was presented by using video analysis. Considering the pavement environment of urban transport artery and the difference between moving object and the statistical characteristics for road background, an adaptive background updating algorithm was realized based on Bayesian probability criterion, from which foreground image was extracted. Motion detection and real-time tracking were realized for target vehicle in video sequence based on Kalman filter. The traffic flow video collected from a certain urban transport artery of Chongqing was detected by using the proposed method. Experimental result indicates that the video with normal resolution can be processed in time by using the method, and the average detecting accuracy is 94 %, so the proposed method has good real-time performance and robustness, and meets the requirement of real- time detecting and tracking vehicles in urban traffic arteries. 2 tabs, 5 figs, 15 refs.
出处 《交通运输工程学报》 EI CSCD 北大核心 2012年第4期107-113,共7页 Journal of Traffic and Transportation Engineering
基金 国家自然科学基金项目(61004118) 重庆市自然科学基金项目(cstc2011jjA40030)
关键词 智能交通系统 交通流 检测方法 自适应背景 车辆跟踪 贝叶斯算法 卡尔曼滤波 intelligent transportation system traffic flow detecting method adaptive background vehicle tracking Bayesian algorithm Kalman filter
  • 相关文献

参考文献14

  • 1杨国亮,王志良,牟世堂,解仑,刘冀伟.一种改进的光流算法[J].计算机工程,2006,32(15):187-188. 被引量:27
  • 2郑锦,李波.视频序列中运动对象检测技术的研究现状与展望[J].计算机应用研究,2008,25(12):3534-3540. 被引量:10
  • 3查成东,王长松,崔巍.背景差方法在复杂场景条件下的应用[J].计算机工程与设计,2008,29(4):894-895. 被引量:4
  • 4田军,魏振华,武思远.能量法的自适应背景更新算法[J].计算机科学与探索,2009,3(2):218-224. 被引量:3
  • 5SONG K T, TAI J C, Real-time background estimation of traffic imagery using group-based histogram[J]. Journal of Information Science and Engineering, 2008(24): 411-423.
  • 6TANIGUCHI H, NAKAMURA T, FURUSAWA H. Methods of traffic flow measurement using spatio-temporal image[C]//IEEE. Proceedings of 1999 International Conference on Image processing. Kobe: IEEE, 1999: 16-20.
  • 7WAKABAYASHI Y, AOKI M. Traffic flow measurement using stereo slit eamera[C]//IEEE. Proceedings of the 7^th international Conference on Intelligent Transportation Systems. Washington DC: IEEE, 2004: 7-12.
  • 8KOLLER D, WEBER J, HUANG T, et al. Towards robust automatic traffic scene analysis in real-time [C]//IEEE. Proceeding of the 33rd of IEEE Conference on Pattern Recognition. Jerusalem: IEEE, 1994: 126-131.
  • 9JUN G, AGGARWAL J K, GOKMEN M. Tracking and segmentation of highway vehicles in cluttered and crowded scenes[C]//IEEE. Proceedings of the 2008 IEEE Workshop on Applications of Computer Vision. Copper Mountain: IEEE, 2008: 1-6.
  • 10TAMERSOY B, AGGARWAL J K. Robust vehicle detection for tracking in highway surveillance videos using unsupervised learning[C] //IEEE. Proceedings of the 2009 Sixth IEEE International Conference on Advanced Video and Signal Based Surveillance. Genova: IEEE, 2009: 529-534.

二级参考文献77

  • 1张忠伟,刘贵忠,李宏亮,李永利.基于能流信息的视频分割[J].电子学报,2005,33(1):177-180. 被引量:2
  • 2刘震,赵杰煜.基于混合概率背景模型的视频分割方法[J].计算机应用,2005,25(7):1616-1619. 被引量:1
  • 3吕常魁,姜澄宇,王宁生.一种新的运动检测及轮廓追踪方法[J].武汉大学学报(信息科学版),2005,30(8):723-727. 被引量:11
  • 4李斌,史忠科.基于计算机视觉的行人检测技术的发展[J].计算机工程与设计,2005,26(10):2565-2568. 被引量:16
  • 5于成忠,朱骏,袁晓辉.基于背景差法的运动目标检测[J].东南大学学报(自然科学版),2005,35(A02):159-161. 被引量:48
  • 6ELGAMMAL A, DURAISWAMI R, DAVIS L. Efficient non-parametric adaptive color modeling using fast Gauss transform [ C ]//Proc of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 2001 : 563- 570.
  • 7TOYAMA K, KRUMM J, BRUMITT J, et al. Wallflower: principles and practice of background maintenance [ C ] HProc of the 7th IEEE International Conference on Computer Vision. 1999:255-261.
  • 8OLIVER N M, ROSARIO B, PENTLAND A P. A Bayesian computer vision system for modeling human interactions [ J ]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2000,22 ( 8 ) : 831- 843.
  • 9CUCCHIARA R, GRANA C, PICCARDI M, et al. Detecting moving objects, ghosts, and shadows in video streams[ J]. IEEE Trans on Pattern Analysis and Machine Intelligence,2003,25 (10) : 1337- 1342.
  • 10ZHENG Jin, LI Bo, YAO Chuan-lian, Robust abnormity detecting and tracking using correlation coefficient[ C]//Proc of the 12th International Multi-Media Modeling Conference. 2006:72-79.

共引文献47

同被引文献46

  • 1朱仲杰,蒋刚毅,郁梅,吴训威.一种基于时空信息的运动目标提取新算法[J].中国图象图形学报(A辑),2003,8(4):422-426. 被引量:6
  • 2曹江中,戴青云,谭志标,邸磊.基于视频的高速公路车辆检测和跟踪算法[J].计算机应用,2006,26(2):496-499. 被引量:25
  • 3侯志强,韩崇昭.视觉跟踪技术综述[J].自动化学报,2006,32(4):603-617. 被引量:255
  • 4杨国亮,王志良,牟世堂,解仑,刘冀伟.一种改进的光流算法[J].计算机工程,2006,32(15):187-188. 被引量:27
  • 5陈祖爵,陈潇君,何鸿.基于改进的混合高斯模型的运动目标检测[J].中国图象图形学报,2007,12(9):1585-1589. 被引量:37
  • 6STAUFFER C, GRIMSON W E L. Learning patterns of activity using real-time tracking[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22 (8): 747-757.
  • 7ZIVKOVIC Z, HEIJDEN K Efficient adaptive density estimation per image pixel for the task of background subtraction[J]. Pat- tern Recognition Letters, 2006, 27(7): 773-780.
  • 8LEE D S. Effective Gaussian mixture learning for video back- ground subtraction[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(5): 827-832.
  • 9SEKI M, WADA T, FUJIWARA H, et al. Background sub- traction based on cooecurrence of image variations[C]// IEEE. Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington DC: IEEE, 2003: 65-72.
  • 10HEIKKILA M, PIETIKAINEN M. A texture-based method for modeling the background and detecting moving objects[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(4): 657-662.

引证文献5

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部