期刊文献+

圆环区域上带梯度项的椭圆型方程径向大解的爆破速率

The Blow-up Rates of Large Radial Solutions for the Elliptic Equation with Gradient Term in Annular
下载PDF
导出
摘要 本文研究在圆环区域上带梯度项和完全非线性项的半线性椭圆型方程边值问题径向大解的爆破速率。在证明一些重要极限的基础上,与常微分方程分析法相结合得到了当完全非线性项满足Keller-Osserman条件,梯度项的指数范围分别在0~1和大于2时径向大解的爆破速率及在加强的条件下大解边界行为的第二次影响. In this paper,the blow-up rates of large radial solutions for the semilinear elliptic equation with gradient term and fully nonlinear term in annular domain was investigated.On the basis of the proof of some important limits,using ordinary differential equation analysis method,we achieved the blow-up rates of large radial solutions when fully nonlinear term satisfies the Keller-Osserman conditions and the exponential of gradient term ranges from 0 to 1 or larger than 2.Moreover,we considered a secondary effect on the asymptotic behavior of solutions under the enhanced conditions.
出处 《中国海洋大学学报(自然科学版)》 CAS CSCD 北大核心 2012年第9期115-118,共4页 Periodical of Ocean University of China
基金 国家留学回国人员科研启动基金项目(910937020)资助
关键词 椭圆型方程 大解 爆破速率 elliptic equations large solution blow-up rate
  • 相关文献

参考文献13

  • 1Bieberbach L. △u= e^u und die automorphen Funktionen [J]. Math. Ann, 1916, 77: 173-212.
  • 2Rademacher H. Einige becondere probleme paitieller differentialgleichungen [M] //Die differential-und-integragleichungen der Mechanik I, 2nd edition. New York: Rosenberg, 1943, 838-845.
  • 3Cheng jiangang, Guang Luo. Uniqueness of positive radial solutions for Dirichlet problems on annular domains [J]. Math Anal-Ap, 2008, 338: 416-426.
  • 4Coffman C V. Uniqueness of the positive radial solutions on an annulus of the Diriehlet problem for △u-u+ u^3 = 0 [J]. Differ Equat, 1996, 128:379-386.
  • 5Xabier Garaizar. Existence of positive radial solutions for semilinear elliptic equations in the annulus [J]. Differ equat, 1987, 70: 69-92.
  • 6Chun Chieh Fu, Song Sun Lin. Uniqueness of positive radial solutions for semilinear elliptic equations on annular domains [J]. Nonlinear Anal, 2001, 44: 749-758.
  • 7Juan Davila, Marcelo Montenegro. Radial solutions of an elliptic equation with singular nonlinearity[J]. Math Anal Appl, 2009, 352: 360-379.
  • 8Bandle C, Marcus M. On second order effects in the boundary behaviour of large solutions of semilinear elliptic problems[J]. Differ Int Equat, 1998, 11: 9-24.
  • 9郝晓燕,程建纲.环形区域上Dirichlet问题正径向解的唯一性[J].烟台大学学报(自然科学与工程版),2009,22(2):83-86. 被引量:1
  • 10李永祥.球外部区域上非线性椭圆型方程的正径向解[J].Journal of Mathematical Research and Exposition,2005,25(1):128-133. 被引量:3

二级参考文献13

  • 1Cheng jiangang, Guang Luo. Uniqueness of positive radial solutions for Dirichlet problems on annular domains [ J ] , J Math Anal Appl,2008, 338:416-426.
  • 2Coffman C V. Uniqueness of the positive radial solution on an annulus of the Diriehlet problem for △u - u + u^3 = 0,[J]. Differential Equations, 1996, 128: 379-386.
  • 3Fu C C, Lin S S. Uniqueness of positive radial solutions for semilinear elliptic on annular domains[ J]. Nonlinear Anal ,2001,44 : 749-758.
  • 4Jator S, Sinkala Z. Uniqueness of positive radial solutions for △u +f(u) =0 on annulus[J]. Int Pure Appl Math, 2004(12) :23-32.
  • 5Tang M. Uniqueness of positive radial solutions for △u - u + u^p = 0 on an annulus [ J]. Differential Equations, 2003 (189) :148-160.
  • 6Yadava S L. Uniqueness of positive radial solutions of a semilinear Dirichlet problem in an annulus[ J] , Proc Roy Soc Edinburgh A, 2000,130 : 1417-1428.
  • 7Yadava S L. Uniqueness of positive radial solutions of the problems -△ = u^p +-u^q in an annulus[J]. Differential Equations, 1997,139 : 194-217.
  • 8STRUWE M. Superlinear elliptic boundary value problems with rotational symmetric [J]. Arch. Math., 1982,39: 233-240.
  • 9CASTRO A, KUREPA A. Infinitely many radially symmetric solutions to superlinear Dirichlet problem in a Ball [J]. Proc. Amer. Math. Soc., 1987, 101: 57-64.
  • 10LIN S S. On the existence of positive radial solutions for semilinear elliptic equations in annular domains [J].J. Differential Equations, 1989, 81: 221-233.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部