期刊文献+

FCM和Level Set在医学影像分割中的应用 被引量:3

Application of FCM and Level Set in Medical Image Segmentation
下载PDF
导出
摘要 目的探讨RGAC-M(改进的区域几何活动轮廓模型),用于更准确地分割医学图像。方法通过分析区域几何活动轮廓模型(RGAC)在医学图像分割中存在的缺陷,并对其区域项进行改进,提出了RGAC-M模型。该模型采用多种子初始化方式,降低了算法对初始条件的敏感性,同时也减少了人工干预。结果利用RGAC-M对多种脑组织(灰质、白质、脑脊液以及背景等)进行分割,取得了良好效果。结论 RGAC-M可减少图像分割的迭代次数,提高图像分割速度和图像质量。 Objective To explore RGAC-M(Region Based Geometric Active Contour-Model),in order to divide medical images more accurately.Methods By analyzing the existing defects of RGAC in medical image segmentation and improving its areas,RGAC-M is put forward,namely,by adopting many ways of substate initialization,reduces the sensibility of arithmetic to initial conditions,and meanwhile decreases manual intervention.Results In the way of various of brain(cinerea,alba,cerebrospinal fluid,background and so on) segmentation,RGAC-M got good result.Conclusion RGAC-M could reduce iterations of image segmentation and improve segmentation speed and image quality.
出处 《中国医疗设备》 2012年第9期38-41,共4页 China Medical Devices
基金 海南省自然科学基金项目(310154)资助
关键词 核磁共振成像 图像分割 模糊聚类 几何活动轮廓模型 magnetic resonance imaging image segmentation fuzzy clustering geometric active contour
  • 相关文献

参考文献4

二级参考文献32

  • 1麻彦轩,刘上乾,申建华.一种新的红外目标图像分割算法[J].激光与红外,2005,35(3):200-202. 被引量:4
  • 2秦昆,李德毅,许凯.基于云模型的图像分割方法研究[J].测绘信息与工程,2006,31(5):3-5. 被引量:31
  • 3Pohle R,Toennies K D.A Hew approach for model-based adaptive region growing in medical image analysis[C]//Proceedings of the 9th International Conference on Computer Analysis and Patterns.Berlin,Germany:Springer,2001:238-246.
  • 4Grinias I,Tziritas G.A semi-automatic seeded region growing algorithm for video object localization and tracking[J].Signal Processing:Image Communication,2001,16(10):977-986.
  • 5Fan J P,Zeng G H,Body M,et al.Seeded region growing:An extensive and comparative study[J].Pattern Recognition Letters,2005,26(8):1139-1156.
  • 6Mehnert A,Jackway P.An improved seeded region growing algorithm[J].Pattern Recognition Letters,1997,8(10):1065-1071.
  • 7Udupa J K,Sahn P K,Lotufo R A.Relative fuzzy connectedness and object definition:Theory,algorithms,and applications in image segmentation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,24(11):1485-1500.
  • 8Otsu N.A threshold selection method from gray level histogram[J].lEEE Tram on Syst Man,Cybem,1979,9(1):62-66.
  • 9Shojaii R, Alirezaie J, Babyn P. Automatic lung segmentation in CT images using watershed transform. Image Processing, 2005. ICIP 2005. IEEE International Conference on,2005,2: Ⅱ-1271-3.
  • 10Lu Meng, Hong Zhao. Interactive Lung Segmentation Algorithm for CT Chest Images Based on Live-Wire Model and Snake Model[M]. Electronic Computer Technology, 2009 International Conference on, 2009:461-466.

共引文献52

同被引文献21

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部