期刊文献+

金属氢化物反应器吸氢过程的热质传递特性分析 被引量:9

Analysis on Heat and Mass Transfer Characteristics of Metal Hydride Reactors During Adsorption
下载PDF
导出
摘要 为了研究金属氢化物反应器内吸氢过程的热质传递特性,建立了圆柱形反应器的二维多物理场模型.新建立的模型考虑了换热流体流速与温度变化对反应器吸氢过程的影响,采用COM-SOL Multiphysics V3.5a软件来求解,并探讨了一些重要参数变化对反应器性能的影响.结果表明:接近换热管壁处的氢化物床的温度较低,吸氢反应更快,换热流体入口附近床层的吸氢反应比出口附近的快;减小氢化物床层与换热管壁面之间的接触热阻和增加氢化物床层有效导热系数都可以增强换热效果,从而加快吸氢反应,当接触热阻从0.002m2.K/W减小到0.000 5m2.K/W时,吸氢反应时间大约缩短了15.5%;采用强化换热措施可以减少吸氢反应时间,提高反应器平均功率. The two-dimensional multi-physics model of a cylindrical metal hydride reactor during adsorption was presented to study heat and mass transfer characteristics of metal hydride reactors. In this model, the effects of velocity and temperature changes of heat transfer fluid on the hydrogen adsorption process were considered. The model was numerically solved using the COMSOL Multiphysics V3.5a, and the effects of some important parameters on the reactor performance were discussed. The results show that the hydrogen adsorption reaction is faster near the heat exchanger tube wall where the bed temperature is lower. Moreover, the reacted fraction of the bed near the heat transfer fluid inlet is higher than that near the outlet. Both reducing the thermal contact resistance between the hydride bed and the heat exchanger tube wall and increasing the effective thermal conductivity of the hydride bed can improve the heat transfer performance and accelerate the adsorption process. When the thermal contact resistance decreases from 0. 002 m2 · K/W to 0. 000 5 m2 · K/W, the hydriding time drops by about 15.5%. For metal hydride reactors, adopting heat transfer enhancement measures can reduce the hydriding time and increase the average power.
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2012年第9期49-54,共6页 Journal of Xi'an Jiaotong University
基金 国家自然科学基金资助项目(51106118) 高等学校博士学科点专项科研基金资助项目(20100201110007) 苏州市应用基础研究计划资助项目(SYG201019)
关键词 金属氢化物 反应器 热质传递 多物理场模型 metal hydride reactor heat and mass transfer multi-physics model
  • 相关文献

参考文献16

  • 1梁博,张早校,王玉琪.升温型金属氢化物热泵性能分析[J].西安交通大学学报,2004,38(1):89-92. 被引量:4
  • 2MUTHUKUMAR P,GROLL M.Metal hydride based heating and cooling systems:a review[J].Internation-al Journal of Hydrogen Energy,2010,35(8):3817-3831.
  • 3CAO D L,CHEN D M,LIU Y,et al.Structure and hydrogen storage performance of LaNi4.25Al0.75alloy[J].Transactions of Nonferrous Metals Society of Chi-na,2011,21(3):517-522.
  • 4阳明,覃峰,陈江平,叶奇眆,陈德敏,吕曼琪.新型金属氢化物板式反应床的传热特性[J].上海交通大学学报,2009,43(9):1456-1460. 被引量:4
  • 5YANG F S,WANG G X,ZHANG Z X,et al.Design of the metal hydride reactors:a review on the key techni-cal issues[J].International Journal of Hydrogen Ener-gy,2010,35(8):3832-3840.
  • 6El-OSERY I A.Theory of the computer code RET1for the calculation of space-time dependent temperature and composition properties of metal hydride hydrogen storage beds[J].International Journal of Hydrogen Energy,1983,8(3):191-198.
  • 7JEMNI A,NASRALLAH S B.Study of two-dimen-sional heat and mass transfer during absorption in a metal-hydrogen reactor[J].International Journal of Hydrogen Energy,1995,20(1):43-52.
  • 8JEMNI A,NASRALLAH S B,LAMLOUMI J.Exper-imental and theoretical study of a metal-hydrogen reac-tor[J].International Journal of Hydrogen Energy,1999,24(7):631-644.
  • 9ALDA K,MAT M D,KAPLAN Y.A three-dimen-sional mathematical model for absorption in a metal hy-dride bed[J].International Journal of Hydrogen Ener-gy,1999,27(10):1049-1056.
  • 10王玉琪,杨福胜,张早校,冯霄,郭权发.金属氢化物反应器的设计与过程模拟[J].西安交通大学学报,2006,40(7):831-835. 被引量:10

二级参考文献22

  • 1梁博,张早校.氢工质热泵在制冷中应用的研究进展[J].流体机械,2003,31(z1):138-143. 被引量:1
  • 2Momirlan M, Veziroglu T N. Current status of hydrogen energy[J]. Renewable Sustainable Energy Rev, 2002, 6(2): 141-179.
  • 3Mohanty K K. The near-term energy challenge [J]. AIChE J, 2003, 49(10): 2454-2460.
  • 4Dogan A, Kaplan Y, Veziroglu T N. Numerical investigation of heat and mass transfer in a metal hydride bed [J]. Appl Math Comput, 2004, 150 (1): 169-180.
  • 5Ron M. A hydrogen heat pump as a bus air conditioner [J]. Journal of the Less-Common Metals, 1984, 104(2) :259-278.
  • 6MacDonald B D, Rowe A M. Impacts of external heat transfer enhancements on metal hydride storage tanks [J]. Int J Hydrogen Energy, 2006, 31 (12): 1721-1731.
  • 7Dehouche Z, Dejong W, Willers E, et al. Modelling and simulation of heating/air-conditioning systems using the multi-hydride-thermal-wave concept [J]. Applied Thermal Engineering, 1998, 24 (6): 457- 480.
  • 8Byung Ha Kang, Akira Yabe. Performance analysis of a metal-hydride heat transformer for waste heat recovery [J]. Applied Thermal Engineering, 1996, 16 (9): 671-690.
  • 9Klein H P, Groll M. Development of a two-stage metal hydride system as topping cycle in cascading sorption systems for cold generation[J]. Applied Thermal Engineering, 2002, 22(6): 631-639.
  • 10Emmons H W.气体动力学基本原理[M].北京:科学出版社,1988.

共引文献15

同被引文献72

引证文献9

二级引证文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部