期刊文献+

关于R^N上非齐次Kirchhoff方程的注记 被引量:2

A Note on a Nonhomogeneous Kirchhoff Equation on R^N
下载PDF
导出
摘要 运用临界点理论中的Ekeland变分原理研究了非齐次Kirchhoff方程-(1+b∫RN|▽u|2dx)Δu+V(x)u=f(u)+h(x)x∈RN解的存在性,其中V∈C(RN,R)满足infNV(x)≥a1>0,这里a1>0是一个常数,更进一步,对每个M>0,meas({x∈RN:V(x)≤M})<∞,这里meas表示RN中的Lebesgue测度;f∈C(R,R+),f(0)=0,并且f(z)≡0当z<0;limz→0f(z)/z=0,limz→+∞f(z)/z=l<+∞. The existence of the nontrivial solutions for the nonhomogeneous Kirchhoff equation-(1+b∫RN|▽u|2dx)Δu+V(x)u=f(u)+h(x) x∈RNis proved by using the Ekeland’s variational principle in critical point theory,wherein V and f meet the following conditions: V∈C(RN,R) satisfies infx∈RNV(x)≥a1〉0,where a1 is a constant.Moreover,for every M〉0,meas({x∈RN:V(x)≤M})〈∞,where meas denotes the Lebesgue measure in RN;f∈C(R,R+),f(0)=0 and f(z)≡0 when z〈0;limz0 f(z)/z=0,limz+∞f(z)/z=l〈+∞.
作者 陈尚杰 李麟
出处 《西南师范大学学报(自然科学版)》 CAS CSCD 北大核心 2012年第7期13-16,共4页 Journal of Southwest China Normal University(Natural Science Edition)
基金 重庆工商大学科研启动经费项目(2010-56-16)
关键词 KIRCHHOFF方程 非齐次 渐近线性 EKELAND变分原理 Kirchhoff equation nonhomogeneous asymptotically linear Ekeland’s variational principle
  • 相关文献

参考文献13

  • 1ALVES C O, CORREA F J S A, MAT F. Positive Solutions for a Quasilinear Elliptic Equation of Kirchhoff Type [J]. Comput Math Appl, 2005, 49: 85--93.
  • 2CHENG Bi-tao, WU Xian. Existence Results of Positive Solutions of Kirchhoff Type Problems [J].Nonlinear Anal, 2009, 71: 4883--4892.
  • 3HE Xiao-ming, ZOU Wen-ming. Infinitely Many Positive Solutions for Kirchhoff Type Problems [J]. Nonlinear Anal, 2009, 70(3): 1407--1414.
  • 4MA T F, MUNOZ RIVERA J E. Positive Solutions for a Nonlinear Nonlocal Elliptic Transmission Problem [J]. Appl Math Lett, 2003, 16: 243--248.
  • 5MAO An-min, ZHANG Zhi-tao. Sign-Changing and Multiple Solutions of Kirchhoff Type Problems without the P. S. Condition[J]. Nonlinear Anal, 2009, 70: 1275--1287.
  • 6PERERA K, ZHANG Zhi-tao. Nontrival Solutions of Kirchhoff-Type Problems Via the Yang Index [J].J Differential Equations, 2006, 221(1): 246--255.
  • 7ZHANG Zhi-tao, PERERA K. Sign Changing Solutions of Kirchhoff Type Problems Via Invariant Sets of Descent Flow [J]. J Math AnalAppl, 2006, 317(2): 456--463.
  • 8JIN Jia-hua, WU Xian. Infinitely Many Radial Solutions for Kirehhoff-Type Problems in R^N [J]. J Math Anal Appl, 2010, 369: 564--574.
  • 9WU Xian. Existence of Nontrivial Solutions and High Energy Solutions for Schr/Sdinger-Kirchhoff-Type Equations in R^N [J]. Nonlinear Anal: Real World Appl, 2011, 12(2): 1278--1287.
  • 10EKELAND I. On the Variational Principle [J]. Math Anal Appl, 1974, 47: 324--353.

二级参考文献25

  • 1Salvatore A. Multiple Solitary Waves for a Non-Homogeneous Sehrodinger-Maxwell System in R3 [J]. Adv Nonlinear Stud, 2006, 6(2): 157-169.
  • 2ZHAO Lei-Ga, ZHAO Fu-Kun. Positive Solutions for Schrodinger-Poisson Equations with a Critical Exponent [J].Nonlinear Anal, 2009, 70(6) : 2150 - 2164.
  • 3CHEN Shang-Jie, TANG Chun-Lei. High Energy Solutions for the Superlinear Schrodinger-Maxwell Equations [J]. Nonlinear Anal, 2009, 71 : 4927 - 4934.
  • 4ZOU Wei-Ming, Schechter M. Critical Point Theory and Its Applications[M]. New York: Springer, 2006.
  • 5Benci V, Fortunato D, Masiello A, et al. Solitons and the Electromagnetic Field [J]. Math Z, 1999, 232(1) : 73 - 102.
  • 6Ekeland I. On the Variational Principle[J].J Math Anal Appl, 1974, 47: 324- 353.
  • 7Azzollini A, Pomponio A. Ground State Solutions for the Nonlinear Schr6dinger-Maxwell Equations [J]. J Math Anal Appl, 2008, 345(1): 90-108.
  • 8Ambrosetti A, Ruiz D. Multiple Bound States for the SehrOdinger-Poisson Problem [J].Commun Contemp Math, 2008, 10(3) : 391 - 404.
  • 9[1]Rabinowitz P. On Subharmonic Solutions of Hamiltonian Systems [J]. Comm Pure Appl Math, 1980, 31: 609-633.
  • 10[2]Liu C G. Subharmonic Solutions of Hamiltonian Systems [J]. Nonl Anal, 2000, 42: 185-198.

共引文献3

同被引文献12

  • 1ZHANG Zhi-tao, KANISHKA P. Sign-changing Solutions of Kirchhoff Type Problems Via Invariant Sets of Descent Flow[J]. J Math AnalAppl, 2006, 317(2): 456-463.
  • 2MAO An-min, ZHANG Zhi-tao. Sign-changing and Multiple Solutions of Kirchhoff Type Problems without the P. S. Condition [J]. Nonlinear Anal, 2009, 70(3) : 1275-1287.
  • 3SUN Ji-jiang, TANG Chun-lei. Existence and Multiplicity of Solutions for Kirchhoff Type Equations [J]. Nonlinear A- nal, 2011, 74(4): 1212-1222.
  • 4YANG Yang, ZHANG Ji-hui. Positive and Negative Solutions of a Class of Nonlocal Problems [J]. Nonlinear Anal, 2010, 73(1): 25-30.
  • 5谢启林.两类Kirchhoff型方程解的存在性和多重性[D].重庆:西南大学,2012.
  • 6CHEN S W, LIU S B. Standing Waves For 4-Superlinear Schr6dinger-Kirchhoff Equations [J]. Math Methods Appl Sci, 2015, 38(11): 2185-2193.
  • 7NIE J J. Existence and Multiplicity of Nontrivial Solutions for a Calss of SchrOdinger-Kirchhoff-Type Equations [J]. J Math Anal Appl, 2014, 417(1): 65-79.
  • 8WU X. Existence of Nontrivial Solutions and High Energy Solutions for Schr6dinger-Kirchhoff-Type Equations in RN i-J]. Nonlinear Anal, 2011, 12(2).. 1278-1287.
  • 9LIU W, HE X M. Multiplicity of High Energy Solutions for Superlinear Kirchhoff Equations i-J]. J Appl Math Comput, 2012, 39(1/2): 473-487.
  • 10YE Y W, TANG C L. Multiple Solutions for Kirchhoff-Type Equations in RN i-J:. J Math Plays, 2013, 54(8) : 1-16.

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部