摘要
运用临界点理论中的Ekeland变分原理研究了非齐次Kirchhoff方程-(1+b∫RN|▽u|2dx)Δu+V(x)u=f(u)+h(x)x∈RN解的存在性,其中V∈C(RN,R)满足infNV(x)≥a1>0,这里a1>0是一个常数,更进一步,对每个M>0,meas({x∈RN:V(x)≤M})<∞,这里meas表示RN中的Lebesgue测度;f∈C(R,R+),f(0)=0,并且f(z)≡0当z<0;limz→0f(z)/z=0,limz→+∞f(z)/z=l<+∞.
The existence of the nontrivial solutions for the nonhomogeneous Kirchhoff equation-(1+b∫RN|▽u|2dx)Δu+V(x)u=f(u)+h(x) x∈RNis proved by using the Ekeland’s variational principle in critical point theory,wherein V and f meet the following conditions: V∈C(RN,R) satisfies infx∈RNV(x)≥a1〉0,where a1 is a constant.Moreover,for every M〉0,meas({x∈RN:V(x)≤M})〈∞,where meas denotes the Lebesgue measure in RN;f∈C(R,R+),f(0)=0 and f(z)≡0 when z〈0;limz0 f(z)/z=0,limz+∞f(z)/z=l〈+∞.
出处
《西南师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2012年第7期13-16,共4页
Journal of Southwest China Normal University(Natural Science Edition)
基金
重庆工商大学科研启动经费项目(2010-56-16)