期刊文献+

拟Banach空间正交的右存在性和左存在性 被引量:1

Right-Existence and Left-Existence of Orthogonality in Quasi-Banach Spaces
原文传递
导出
摘要 给出了一类新的正交性—拟Banach空间正交性,它是正交性的一种推广。首先,建立了拟Banach空间中两个元素的正交性与线性泛函之间的关系,并给出拟Banach空间正交的充要条件,即设X是实数域R上的拟Banach空间,有界线性泛函f∈SX*=f∈X*:‖f‖=1{},非零元素x∈X,H={h∈H:f(h)=0}是X的超平面,则f(x)=‖x‖等价于x⊥H;然后,给出了拟Banach空间正交右存在性和左存在性的充分条件;最后,举例说明了拟Banach空间中任意两元素不一定有正交右存在性。 A class of new generalized orthogonality of quasi-Banach spaces is given in this paper.It is a generalization of orthogonality.First,the relation of orthogonality and linear functional are introduced.At the same time,a necessary and sufficient condition of orthogonality in quasi-Banach spaces is given.Namely,let X be a quasi-Banach spaces on R,f∈SX*=f∈X*∶‖f‖=1 for all x∈X and x≠0,H={h∈H∶f(h)=0},then fx=‖x‖ is equivalent to x⊥H.The sufficient conditions of right-existence and left-existence of orthogonality are discussed.Finally,two examples which show that right-existence of orthogonality in quasi-Banach spaces does not exist for all elements are given.
作者 薛建明
出处 《重庆师范大学学报(自然科学版)》 CAS 北大核心 2012年第5期50-52,共3页 Journal of Chongqing Normal University:Natural Science
关键词 拟BANACH空间 正交 超平面 quasi-Banach space orthogonality hyperplane right-existence left-existence
  • 相关文献

参考文献6

  • 1Birkhoff G. Orthogonality in linear metric space [J]. Duke Math J,1935,1:169-172.
  • 2JAME R C. Orthogonality and linear functional in normed linear space [J]. Trans Amer Math Soc,1947, 12: 265-292.
  • 3Kaewkhao A. The James constant,the Jordan-von Neumann constant, weak orthogonality, and fixed points for multivalued mappings[J]. J Math Anal Appl, 2007,333 : 950-958.
  • 4Benyamini Y,Lindenstauss J. Geometric nonlinear functional analysis [ M]. Louisrille: Amer Math Soc Colloq Publ,1999.
  • 5Rolewicz S. Metric linear spaces[M]. Warszawa: PWN-Polish Sci Publ Warszawa, 1984.
  • 6徐永春.拟Banach空间与K-凸集上Minkowski泛函[J].河北大学学报(自然科学版),2004,24(4):345-349. 被引量:4

二级参考文献4

共引文献3

同被引文献14

  • 1王敏,何诣然.Banach空间中集值映射的广义变分不等式问题[J].四川师范大学学报(自然科学版),2006,29(4):447-449. 被引量:6
  • 2Fang S C, Peterson E L. Generalized variational inequalities[ J ]. J Optim .Theory Appl, 1982,38 (3) :363 -383.
  • 3Daniilidis A, Hadjisavvas N. Coercivity conditions and variational inequalities[ J]. Ma!h Programming, 1999, A86(2) :433 -438.
  • 4Lie Y R. Stable pseudomonotone variational inequality in reflexive Banaeh spaces [ J ]. J Math Anal Appl, 2007,330 (1): 352 - 363.
  • 5Qiao F S, He Y R. Strict feasibility of pseudomonotone set - valued variational inequalities [ J ]. Optimization, 2011,60 ( 3 ) : 303 - 310.
  • 6He Y R. The Tikhonov Regularization Method for Set- Valued Variational Inequalities[ J/OL]. Abst Appl Anal,2012, http :// dx. doi. org/10.1155/2012/172061.
  • 7Sion M. On general minimax theorems [ J ]. Pacific J Math, 1958,8 ( 1 ) : 171 - 176.
  • 8Aubin J P, Ekeland I. Applied Nonlinear Analysis [ M]. Toronto:John Wiley & Sons, 1984.
  • 9Facchinei F, Pang J S. Finite - Dimensional Variational Inequalities and Complementarity Problems [ M ]. New York : Springer - Verlag, 2003.
  • 10何诣然.KKM定理,极小极大不等式的推广和应用[J].四川师范大学学报(自然科学版),1998,21(2):154-158. 被引量:2

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部