期刊文献+

预处理后含参数形式的SOR迭代法收敛性

The Convergence of the SOR Iterative Method with Parameters in Preconditioned
原文传递
导出
摘要 在运用SOR迭代法求解线性方程组Ax=b时,针对常见的预条件矩阵P=(I+S),本文给出预处理后迭代法的一类含参数分裂形式As=1γ{[αI-γ(L-S+L1)]-[(α-γ)I+γD1+γU]},使得分裂形式更加一般化,当α=1时就成为常见的预条件SOR迭代法。结合矩阵分析和矩阵比较定理,讨论这种含参数分裂形式下的SOR迭代法不仅能加速SOR迭代法,而且收敛速度超过常见预条件SOR迭代法,通过参数α的不同取值找到迭代法谱半径的变化趋势,得到当参数γ=α时该方法的谱半径最小,即收敛速度最快。最后给出数值例子加以验证。 In using the SOR iterative method for solving linear system Ax=b,this paper gives the SOR iterative method after preconditioned P=(I+S) with parameters splitting form,As=1 γ{[αI-γ(L-S+L1)]-[(α-γ)I+γD1+γU]}.This can make splitting form more generalized,and obtain the common preconditioned SOR iterative method when α=1.By using matrix iterative analysis and comparison theorems to discuss convergence rate of this SOR iterative method after preconditioned with parameters splitting form is not only to accelerate the SOR iterative method,but also to excel the general SOR iterative method after preconditioned.Then find the spectral radius change trend by changing parametersα,and obtain the parameter optimal selection in γ=α,at this time the convergence rate is fastest.Finally the numerical example is given to verify the conclusions
作者 雷刚
出处 《重庆师范大学学报(自然科学版)》 CAS 北大核心 2012年第5期53-55,共3页 Journal of Chongqing Normal University:Natural Science
基金 宝鸡文理学院重点项目(No.ZK11015)
关键词 预条件 收敛性 SOR迭代法 谱半径 precondition convergence the SOR iteration method spectral radius
  • 相关文献

参考文献7

  • 1Huang T Z,Cheng G H.Cheng X Y. Modified SOR-type iterative method for Z-matrices [J]. Applied Mathematics and Computation,2006 ,175 :258-268.
  • 2Hiroshi N,Kyouji H, Munenori M,et al. The survey of preconditioners used for accelerating the rate of convergence in the Gauss-Seidel method [J]. Journal of Computational and Applied Mathematics, 2004,165 : 587-600.
  • 3Jae Heon Yun. A note on the modified SOR method for Z-matrices [J]. Applied Mathematics and Computation, 2007,194:572-576.
  • 4周富照,张艳丽.多项式预条件求解一类矩阵方程[J].重庆理工大学学报(自然科学),2011,25(3):102-107. 被引量:3
  • 5Yong D M. Iterative solution of large linear systems [M]. New York: Academic press,1971.
  • 6Varga R S. Matrix iterative analysis [M]. Heidelberg: Spring-Verlag,2000.
  • 7Wang X Z,Huang T Z,Fu Y D. Comparison results on preconditioned SOR-type iterative method for Z-matrices linear systems [J3. Journal of Computational and Applied Mathematics, 2007,206 : 726-732.

二级参考文献5

  • 1田静,周富照,钟志宏.解矩阵方程的一种多项式预处理技术[J].吉首大学学报(自然科学版),2010,31(1):22-26. 被引量:2
  • 2Zhou F Z,Zhang L, Hu X Y. Least-squares solutions for inverse problems of centro symmetric matrices[ J ]. C MA,2003,45: 158l - 1589.
  • 3Zhou F Z, Hu X Y,Zhang L. Least-squares solution of class of inverse eigenvalue problems for Symmetric ortho-symmetricnonnegative definite matrices [ J ]. Numerical Mathematics, 2003,5 : 107 - 111.
  • 4周富照.几类约束矩阵方程及其最佳逼近[D].长沙:湖南大学,2002.
  • 5周富照,胡锡炎,张磊.反中心对称矩阵反问题解存在的条件[J].系统科学与数学,2003,23(3):328-336. 被引量:5

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部