期刊文献+

一种改进的SVM多类分类算法在入侵检测中的应用 被引量:8

Application of an Improved SVM Multi-Class Classification to Intrusion Detection
原文传递
导出
摘要 入侵检测作为网络安全的关键技术,成为了当前网络安全研究的热点,入侵检测算法的准确率和推广性能是研究的重点。基于二叉树的思想和超球支持向量机的特点,本文提出了一种改进的SVM多类分类入侵检测算法。本文通过引入相似度函数作为权值,选取相似性最小的两类样本构造两类分类器,采用自下而上的方法构造多个两类超球SVM分类器,并将该多类分类算法应用于入侵检测中。利用KDD CUP 1999入侵检测数据进行了仿真实验,实验结果表明,该算法能有效提高检测准确率、推广性能也得到较好改善。 Intrusion detection system as the key technology oi network security becomes research hot spot oI the current net- work security, while precision and generalization performance is the key point of intrusion detection algorithm. According to binary tree method and the characteristics of sphere structured support vector machine, an improved SVM multi-class classifi- cation algorithm is proposed to intrusion detection. This algorithm uses similarity functions as weight value and selects two kinds of sample similarity minimum to structure two-class classifier; to bottom-up structure kinds of two-class classifier of sphere structured SVM. Finally it is applied to intrusion detection. The KDD CUP 1999 intrusion detection data used to simu- late experiments. Experimental results show that the algorithm effectively improved the detection accuracy and generalization performance.
出处 《重庆师范大学学报(自然科学版)》 CAS 北大核心 2012年第5期63-66,共4页 Journal of Chongqing Normal University:Natural Science
基金 重庆市教委科学技术项目(No.KJ110617) 重庆市自然科学基金(CSTC2010BB2090) 重庆师范大学校级项目(No.cyjg1205)
关键词 支持向量机 球结构 二叉树 入侵检测 Support Vector Machine sphere structure binary tree intrusion detection
  • 相关文献

参考文献13

  • 1Vapnik V. The nature of statistical learning theory [M]. New York:Springer, 1995.
  • 2Hsu C W,Lin C J. A comparison of methods for multiclass support vector machines[J]. IEEE Transactions on Neural Networks, 2002,13 (2):415-425.
  • 3TaxD M J,Duin R P W. Data domain description using support vectors [ C ] //Anon Poceedings of European Symposium on Artificial Neural Networks. Bruges (Belgium) :D-Facto, 1999 : 251- 256.
  • 4Zhu M L,Wang Y,Chen S F,et al. Sphere-structured support vector machines for multi-class pattern recognition [J]. Lecture Notes in Computer Science,2003,2639:589-593.
  • 5Bykova M,Ostermann S,Tjaden B. Detecting network intrusions via a statistical analysis of network packet characteristics [ C ] //Anon Proceedings of the 33rd Southeastern Symposium on System Theory. Athens: IEEE,2001 ;309-314.
  • 6Han S J , Cho S B. Evolutionary neural networks for a-nomaly detection based on the behavior of a program [J]. IEEE Transactions on Systems,Man. and Cybernetics, Part B,2005:559-570.
  • 7黄勤,龚海清,刘金亨,孔祥龙.基于改进的遗传神经网络入侵检测系统[J].重庆理工大学学报(自然科学),2010,24(2):83-86. 被引量:8
  • 8Cao L J,Chua K S,Chong W K. A comparision of PCA, KPCA and ICA for dimensionality reduction in Support Vector Machine[J]. Neurocomputing, 2003, 55(2): 321-336.
  • 9张晨,王晓东.基于支持向量机的网络入侵异常检测[J].重庆工学院学报,2007,21(23):119-121. 被引量:2
  • 10秦玉平,罗倩,王秀坤,王春立.一种快速的支持向量机多类分类算法[J].计算机科学,2010,37(7):240-242. 被引量:3

二级参考文献49

共引文献27

同被引文献42

  • 1CoxIJ MillerML BloomJA.数字水印[M].北京:电子工业出版社,2003..
  • 2宋明秋,傅韵,邓贵仕.基于决策树和协议分析的入侵检测研究[J].计算机应用研究,2007,24(12):171-173. 被引量:9
  • 3Wolpaw J R,McFarland D J,Vaughan T M. Brain-computer interface research at the Wadsworth Center. Rehabilitation Engineering [J]. IEEE Transactions on Neural Systems and Rehabilitation, 2000,8 (2):222-226.
  • 4Wnlpaw J R,McFarland D J,Vaughan T M,et al. The Wadsworth Center brain computer interface (BCI) research and development program. Neural Systems and Rehabilita- tion Engineering[J]. IEEE Transactions on Rehabilitation Engineering, 2003,11 (2): 1-4.
  • 5Leuthardt,Schalk G,Wolpaw J R,et al. A brain-com puter interface using electrocorticographic signals in humans [J]. Journal of Neural Engineering, 2004,1 (2) :63-71.
  • 6Pfurtscheller G,Neuper C,Guger C,et al. Current trends in Graz brain-computer interface (BCI)research [J]. Rehabilita- tion Engineering, IEEE Transactions on,2000,8(2): 216-219.
  • 7Lemm S,Blankertz B,Curio G,et al. Spatio-spectral filters for improving the classification of single trial EEG [J]. Biomedical Engineering, IEEE Transactions on,2005,52 (9):1541-1548.
  • 8McFarland D J,Samacki W A,Wolpaw J R. Brain-computer interface (BCI) operation: optimizing information transfer rates[J]. Biological Psychology, 2003,63 (3) :237-251.
  • 9Pfurtscheller G,F. Lopes da Silva, Event-related EEG/MEG synchronization and desynchronization: basic principles [J]. Clinical NeuroDhvsiolozv. 1999.110 ( 11 ): 1842-1857.
  • 10Pradosh Bandyopadhyay.Color Image Authentication through a Dynamic Fragile Watermarking Framework[J].International Conference on Methods and Modelsin Computer Science,2009(3):160-165.

引证文献8

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部