期刊文献+

融合SIFT和MIL的红外人脸识别方法 被引量:5

Infrared face recognition method by integration of SIFT and MIL
下载PDF
导出
摘要 针对红外人脸识别问题,提出一种新的基于尺度不变特征转换(SIFT)与多示例学习(MIL)相结合的算法。该算法将图像当作多示例包,SIFT描述子当作包中的示例,利用聚类的方法对训练集中的所有SIFT描述子进行聚类,建立"视觉词汇表",再根据"视觉字"在多示例训练包中出现的频率,建立"词-文档"矩阵,采用潜在语义分析(LSA)的方法获得多示例包(图像)的潜在语义特征,将MIL问题转化成标准的有监督学习问题,即在潜在语义空间用支持向量机(SVM)求解MIL问题。基于OTCBVS标准数据集的对比实验结果表明,所提算法是可行的,且识别率明显高于其他方法。 For the problem of infrared image face recognition, a novel algorithm based on SIFT feature and multi-instance learning (MIL) algorithm is proposed. Firstly, this algorithm regards image as a bag, and SIFT descriptor of the key points as instance. Then all the SIFT descriptors in the training set have been clustered by K-Means method, and regards cluster centers as "visual word" to build "visual vocabulary table"; Secondly, according to the frequency of "visual word" in the training bag to establish a "word-document" matrix, then latent semantic analysis (LSA) method is used to obtain bag' s (image) latent semantic features, converts MIL problem to a standard supervised learning problem, which means to solve MIL problem use SVM in the latent semantic space. Experimental results on the OTBCVS image set show that the algorithm proposed is feasible, and the performance is superior to other algorithms.
出处 《西安邮电学院学报》 2012年第4期15-20,共6页 Journal of Xi'an Institute of Posts and Telecommunications
基金 陕西省教育厅科研基金资助项目(12JK0734 11JK0994) 西安邮电学院博士科研启动基金资助项目(1091216) 西安邮电学院青年基金资助项目(1090428)
关键词 多示例学习 红外人脸识别 SIFT描述子 multi-instance learning (MIL), infrared face recognition, SIFT descriptor
  • 相关文献

参考文献20

二级参考文献113

共引文献114

同被引文献49

  • 1周敬利,吴桂林,余胜生.基于BP神经网络的人脸检测算法[J].计算机工程,2004,30(11):34-36. 被引量:20
  • 2单勇,王润生.适应灰度和光照变化的运动目标跟踪方法[J].计算机辅助设计与图形学学报,2006,18(2):283-288. 被引量:7
  • 3帅师,周平,汪亚明,周维达.基于小波的实时烟雾检测[J].计算机应用研究,2007,24(3):309-311. 被引量:21
  • 4飞思科技产品研发中心.神经网络理论与MATLAB7实现[M].北京:电子工业出版社,2000.
  • 5张强.精通Matlab图像处理[M].北京:电子工业出版社,2010.
  • 6左军毅,赵春晖,梁彦,潘泉,张洪才.一种具有跟踪外观变化目标能力的均值漂移算法[J].计算机科学,2007,34(10):244-246. 被引量:2
  • 7Rowley R, Baluja S, Kanadc T. Neural network-based face detection [ J ]. IEEE Trans. On Pattern Analysis and Machine Intelligence, 1998,20(1) : 23 -38.
  • 8Huang Linlin,Akinobu Shimizu,Hidefumi Kobatake. Classification Based Face Detection Using Gabor Filter Features[C]. Pattern Recognition Letters,2005:1641 - 1649.
  • 9Zhu Hailong, Qu Liangsheng,Zhang tlaijun. Face Detection Based on Wavelet Transfirm and Support Vector Machine [ J ]. Journal of Xian Jiaotnng University, 2000, 36 (9):947-950.
  • 10SZ l,i, L Zhu, ZQ Zhang. Statistical farn-ing of multi-view face detection [ C ]. Copenh-agen :The 7th European Conference on Computer Vision, 2002.

引证文献5

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部