期刊文献+

Pt/石墨烯燃料电池催化剂的制备、表征及性能 被引量:2

Synthesis,Characterization and Properties of Pt/Graphene Fuel Cell Catalyst
下载PDF
导出
摘要 采用冷冻干燥-蒸汽还原法成功合成了负载Pt纳米粒子的石墨烯燃料电池催化剂。用扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线衍射仪(XRD)对Pt/石墨烯催化剂的表面形貌及物相组成进行了表征分析。用循环伏安法(CV)研究了Pt/石墨烯催化剂对酸性条件下甲醇的电催化氧化活性。结果表明,通过冷冻干燥后水合肼蒸汽还原的Pt/石墨烯催化剂样品,Pt颗粒粒径在20~40nm,均匀负载于石墨烯的片层结构上。当Pt负载量为10%时,催化活性最高。 Pt/Graphene fuel cell catalysts were successfully synthesized with a freeze dr- ying-vapor reduction method. The surface morphology and phase composition were characterized by scanning electron microscope (SEM), transmission electron microscope (TEM) and X-ray diffraction (XRD). The electrocatalytic activity of the catalysts for the oxidation of methanol was investigated by the cyclic voltammetry(CV). The results showed that the Pt nanoparticles of the Pt/graphene catalyst synthesized with the freeze drying and vapor of hydrazine hydrate reduction method were 20--40 nm in size and were well dispersed on the surface of the graphene. The samples showed the highest photocatalytic activity when the loading of Pt was 10%.
出处 《青岛科技大学学报(自然科学版)》 CAS 北大核心 2012年第4期357-361,367,共6页 Journal of Qingdao University of Science and Technology:Natural Science Edition
基金 国家自然科学基金项目(50872061) 山东省自然科学基金项目(ZR2010EM035) 青岛市科技计划基金项目(10-3-4-4-12-Jch)
关键词 石墨烯 燃料电池 冷冻干燥 循环伏安 电催化 甲醇 graphene fuel cell freeze drying cyclic voltammetry electrocatalytic methanol
  • 相关文献

参考文献22

  • 1Brian C,Steele H,Heinzel A. Materials for fuel-cell technologies [J], Nature, 2001, 414 (15) : 345-352.
  • 2Bauen A, Hart J. Assessment of the environmental benefits of transport and stationary fuel cells [J]. Power Sources, 2000, 86(1/2): 482-494.
  • 3Ren X M, Wilson M S. Gottesfeld S. High performance direct methanol polymer electrolyte fuel cells [J]. J Electro-chem Soc, 1996, 143(1); 12-15.
  • 4Habas S E,Lee H,Radmilovic V,et al. Shaping binary metal nanocrystals through epitaxial seeded growth [J]. Nature Materials, 2007, 6: 692-697.
  • 5Sun Y G, Mayers B,Xia Y N. Metal nanostructures with hollow Interiors [J]. Adv Mater, 2003,15(7/8) : 641-646.
  • 6Bi Y P,Lu G X. Control growth of uniform platinum nanotubes and their catalytic properties for methanol electrooxida-tion [J]. Electrochemistry Communications,2009,11: 45-49.
  • 7Girishkumar G, Vinodgopal K, Kamat P V. Carbon nano structures in portable fuel cells: Single-walled carbon nano- tube electrodes for methanol oxidation and oxygen reduction [J]. J Phys Chem B, 2004, 108(52) : 19960-19966.
  • 8Wang C, Waje M, Wang X. Proton exchange membrane fuel cells with carbon nanotube based electrodes [J]. Nano Letters, 2004, 4(2): 345-348.
  • 9Kim C,Kim Y J, Kim Y A,et at. High performance of cup-vStacked-type carbon nanotubes as a Pt-Ru catalyst support for fuel cell applications [J]. J Appl Phys, 2004, 96: 5903-5905.
  • 10Tang H, Chen J H, Nie L. High dispersion and electrocata-lytic properties of platinum nanoparticles on graphitic carbon nanofibers (GCNFs) [J]. J Colloid Interface Sci,2004. 269(1): 26-31.

二级参考文献103

  • 1徐常威,刘应亮,沈培康.乙醇在炭微球负载催化剂上的电化学氧化[J].电池,2006,36(5):364-366. 被引量:3
  • 2林根来,陈立鹰,詹福根,王小林.多柔比星磁性白蛋白纳米微粒的研制[J].中国新药杂志,2006,15(21):1851-1854. 被引量:5
  • 3Hoffmann M R, Martin S T, Choi W, et al. Environmental applications of semiconductor photocatalysis. Chem Rev, 1995, 95:69--96.
  • 4Li X Z, Liu H, Cheng L F, et al. Photocatalytic oxidation using a new catalyst-TiO2 microsphere-for water and wastewater treatment. Environ Sci Technol, 2003, 37:3989--3994.
  • 5Adachi M, Murata Y, Takao J, et al. Highly efficient dye sensitized solar cells with a titania thin-film electrode composed of a network structure of single-crystal-like TiO2 nanowires made by the "oriented attachment" mechanism. J Am Chem Soc, 2004, 126:14943--14949.
  • 6Zakrzewska K. Mixed oxides as gas sensors. Thin Solid Films, 2001, 391:229--238.
  • 7Kalyanasundaram K, Gratzel M. Applications of functionalized transition metal complexes in photonic and optoelectronic devices. Coord Chem Rev, 1998, 177:347-414.
  • 8Yin S, Hasegawa H, Maeda D, et al. Synthesis of visible-light-active nanosize rutile titania photocatalyst by low temperature dissolu-tion-reprecipitation process. J Photochem Photobiol A Chem, 2004, 163:1--8.
  • 9Li Y T, Sun X G, Li H W, et al. Preparation of anatase TiO2 nanoparticles with high thermal stability and specific surface area by alcohothermal method. Powder Technology, 2009, 194:149--152.
  • 10Minero C, Vione D. A quantitative evalution of the photocatalytic performance of TiO2 slurries, Appl Catal B: Envir, 2006, 67:257--269.

共引文献184

同被引文献60

  • 1陈维民,孙公权,赵新生,孙丕昌,杨少华,辛勤.直接甲醇燃料电池电催化剂性能衰减研究[J].高等学校化学学报,2007,28(5):928-931. 被引量:13
  • 2杜娟,原鲜霞,巢亚军,马紫峰.直接甲醇燃料电池电催化剂研究进展[J].稀有金属材料与工程,2007,36(7):1309-1312. 被引量:16
  • 3刘淑霞,贺军辉.负载铂纳米粒子大孔炭材料的无模板制备[J].新型炭材料,2007,22(3):253-258. 被引量:5
  • 4王黎东,费维栋.高效率低成本机械剥离制备石墨烯或氧化石墨烯的方法:中国,201010179119.1[P].2010-05-21.
  • 5Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306 (5296):666-669.
  • 6Yanwu Zhu, Shanthi Murali, Weiwei Cai, et al. Graphene and graphene oxide: synthesis, properties, and applications [J]. Advanced Materials, 2010, 22(35), 3906-3924.
  • 7Geim A K, Novoselov K S. The rise of graphene[J]. Nature Materials, 2007, 6(3):183-191.
  • 8Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films [J]. Science, 2004, 306(5296):666-669.
  • 9Balandin A A, Ghosh S, Bao W, et al. Superior thermal conductivity of singer-layer graphene [J]. Nano Letter, 2008, 8(3):902-907.
  • 10Chae H K, Siberio-perez D Y, Kim J, et al. A rote to high surface area, porosity and inclusion of large molecules in crystals[J]. Nature, 2004, 427(6974):523-527.

引证文献2

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部