期刊文献+

一类四阶具有p-Laplacian算子微分方程周期解的存在性

Existence of Periodic Solutions for a Fourth-order p-Laplacian Differential Equation
下载PDF
导出
摘要 本文主要利用Mawhin连续性定理,讨论了一类四阶带有变时滞的p-Lapcaian型泛函微分方程:(p(x″(t)))″+f(x′(t))+β(t)g(t,x(t),x(t-ι(t))),x′(t))=e(t)周期解的存在性,得到了方程周期解存在性的相关结论。这与已有的文献的结果不同,所考虑的方程更一般,从而所得的结果就更有广泛的意义。 In this paper, by means of Mawhin's continuation theorem, we study a kind of fourth-order p-Laplacian differential equation with delay as follows :(φp(x″(f)))″+f(x′(t))+β(t)g(t,x(t),x(t-τ(t)),x′(t))=e(t) A new result on the existence of periodic solution is obtained. Our results are different from the previous literatures, the equation considered is more general, which make the results have much more profound meaning.
出处 《西昌学院学报(自然科学版)》 2012年第3期27-32,共6页 Journal of Xichang University(Natural Science Edition)
基金 国家自然科学基金项目(项目编号:10771001) 安徽省教育厅重点项目(项目编号:KJ2009A005Z KJ2010ZD02) 安徽省教育厅自然科学基金项目(项目编号:KJ2010B124) 亳州师专数学教育省级特色专业 亳州师专科研项目(项目编号:BSKY201111 BSKY201113 BSKY201211)专项资金资助
关键词 p-Lapcaian 周期解 Mawhin连续性定理 时滞 P-Lapcaian Periodic solution Mawhin's continuation theorem Delay
  • 相关文献

参考文献6

  • 1Shiping Lu, Zhangjie Gui.On the existence of periodic to p-Laplancian Rayleigh differential equation with a delay[J].Math. Anal.Appl.325(2007) :685-702.
  • 2Shiping Lu, Exsitence of periodic solutions to Lapacian Li e nard differential equation with a deviating argument[EB/OL]. NonlinearAnal. ( 2007 ) doi: 10.1016/j.na.2006 12 04.
  • 3Wing-sun Chenug, On the existence of periodic solutions for p-Laplacian generalied Li e nard equation[J].Nonlinear Anal.60 (2005) ,65-75.
  • 4R.E.Gaines, J.Mawhin, Coincide degree and nonlinear differential equations, in: Lecture Notes in Math[J].Spring-Verlag, 1977(568).
  • 5Jin Shan, Lu Shiping, Periodic solutions for a fourth-order p-Laplacian differential equation with a deviating argument[J]. Nonlinear Anal.69(2008) : 1710-1718.
  • 6刘炳文,黄立宏,张正球.一类n阶非线性时滞微分方程周期解的存在性[J].数学物理学报(A辑),2007,27(2):343-350. 被引量:2

二级参考文献9

  • 1Fuzhong Cong.Periodic solutions for 2kth with nonresonance,Nonlinear Anal,1997,32(6):787-793
  • 2Fuzhong Cong,Qingdao Hunang,Shaoyun Shi.Existence and uniqueness of periodic solutions for (2n+1)th order differential equations.J Math Anal Appl,2000,241:1-9
  • 3Gaines R E,Mawhin J.Coincide Degree and Nonlinear Differential Equations.Lecture Notes in Math,568.Berlin:Spring-Verlag,1977
  • 4Li Weiguo.Periodic solutions for 2kth order ordinary differential equation with resonance.J Math Anal Appl,2001,259:157-167
  • 5Li Yong,Wang Huaizhong.Periodic solutions of high order Duffing equation.Appl Math J Chinese Univ,1991,6:407-412
  • 6Liu Bingwen,Huang Lihong.Periodic solutions for a class of forced Liénard-type equations.Acta Mathematicae Applicatae Sinica,English Series,2005,21:81-92
  • 7Liu Wenbin,Li Yong.The existence of periodic solutions for high order duffing equations.Acta Math Sincia,2003,46:49-56
  • 8Liu Zhaoli.Periodic solutions for nonlinear nth order ordinary differential equations.J Math Anal Appl 1996,204:46-64
  • 9Lu Shiping,Ge Weigao.Periodic solutions for a kind of Liéneard equations with deviating arguments.J Math Anal Appl,2004,249:231-243

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部