期刊文献+

栅格数据处理中邻域型算法的并行优化方法 被引量:10

Parallel optimization methods for raster data processing algorithms of neighborhood-scope
下载PDF
导出
摘要 随着并行计算的成熟,众多数据密集型的栅格处理算法亟需利用并行计算来缩减执行时间。针对其中一类邻域型算法,构建了用于估计是时间代价的串行/并行时域模型,分析了各个组成的代价影响因素,提出了降低数据I/O代价的并行I/O方法和降低数据通信代价的光圈预测方法。实验证明,所提的两个优化方法可以使邻域型栅格处理算法的并行程序更加充分地利用并行计算资源,进而在一般并行化的基础上进一步提升其并行性能。 As parallel computing has become mature and practical, data intensive raster data processing algorithms are desiderating parallel computing technologies to reduce the running time. The objectives of this research focuses on the parallelization of neighborhood-scope algorithms. the sequential/parallel temporal model was developed, the affecting factors of each component of the temporal model were analyzed, and two optimization methods were proposed, which can further promote the parallel performance of neighborhood-scope algorithms: the Parallel I/O method that can reduce the data I/O cost; and the Halo Prediction method that can reduce the data communication cost. Experiments verified the effectiveness and efficiency of the proposed optimization methods, which can further promote the parallel performance by making the parallel algorithmic program fully take advantage of parallel computing resources.
出处 《国防科技大学学报》 EI CAS CSCD 北大核心 2012年第4期114-119,共6页 Journal of National University of Defense Technology
基金 国家863计划资助项目(2011AA120300) 国家自然科学基金资助项目(40801160 61070035) 高等学校博士学科点专项科研基金项目(20104307110017)
关键词 栅格数据处理 邻域型 并行I/O 光圈预测 MPI raster data processing neighborhood-scope Parallel I/O Halo prediction MPI
  • 相关文献

参考文献15

  • 1Kuck D J. High performance computing: challenges for future systems[ M]. New York, NY: Oxford University Press, 1996.
  • 2Guan X F, Wu H Y. Leveraging the power of multi-core platforms for large-scale geospatial data [ J ]. Computers & Geosciences, 2010, 36 : 1276 - 1282.
  • 3Huang Q Y, Yang C W. Optimizing grid computing configuration and scheduling for geospatial analysis: an example with interpolating DEM [ J ]. Computers & Geosciences, 2011,37(2) :165 - 176.
  • 4Tomlin C I). Geographic information systems and cartographic modelling[M]. Englewood Cliffs, NJ: Prentice Hall, 1990.
  • 5Clematis A, Mineter M, Marciano R. High performance computing with geographical data [ J]. Parallel Computing, 2003, 29(10) : 1275 - 1279.
  • 6Jeffrey D, Sanjay G. MapReduce: simplified data processing on large clusters [ C ]//Proceedings of OSDI' 04. USENIX Association, 2004 : 137 - 150.
  • 7Foster I, Kesselman C, Tuecke S. The anatomy of the grid: enabling scalable virtual organizations [ J ]. International Journal Supercomputer Applications, 2001, 15 (3) :200 - 222.
  • 8Armbrust M, Fox A, Griffith R, et al. Above the clouds: a berkeley view of cloud computing[ R]. Berkeley, 2009.
  • 9Mineter M J. Partitioning raster data[ M]. Bristol, PA: Taylor & Francis, 1998.
  • 10Ghemawat S, Gobioff H, Leung S T. The google file system [C]//Proceedings of the 19th ACM symposium on Operating Systems Principles,New York, NY, USA: ACM, 2003:29-43.

二级参考文献9

  • 1[1]LIU Xue-jun.On the Accuracy of the Algorithms for Interpreting Grid-based Digital Terrain Model [D].Wuhan:Wuhan University,2002.(in Chinese)
  • 2[2]SKIDMORE A K.A Comparison of Techniques for the Calculation of Gradient and Aspect from A Grided Digital Elevation Model[J].International Journal of Geographical Information Systems,1989,(3): 323-334.
  • 3[3]FLORINSKY I V.Accuracy of Local Topographic Variables Derived from Digital Elevation Models[J].Int J Geographical Information Science,1998,12(1): 47-61.
  • 4[4]CHANG K,TSAI B.The Effect of DEM Resolution on Slope and Aspect Mapping[J].Cartography and Geographic Information Systems,1991,18: 69-77.
  • 5[5]BOLSTAD P V,STOWE T J.An Evaluation of DEM Accuracy: Elevation,Slope and Aspect [J].Photogrammetric Engineering and Remote Sensing,1994,60:1 327-1 332.
  • 6[6]HODGSON M E.What Cell Size Does the Computed Slope/Aspect Angle Represent? [ J].Photogrammetric Engineering and Remote Sensing,1995,61: 513-517.
  • 7[7]JONES K H.A Comparison of Algorithms Used to Compute Hill Slope as a Property of the DEM [J].Computer and Geosciences,1998,24 (4): 315-323.
  • 8[8]CARTER J.The Effect of Data Precision on the Calculation of Slope and Aspect Using Gridded DEMs[J].Cartographica,1992,29(1): 22-34.
  • 9[9]TANG G.A Research on the Accuracy of Digital Elevation Models[M].Beijing: Science Press,2000.

共引文献157

同被引文献85

引证文献10

二级引证文献80

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部