期刊文献+

富磷剩余污泥厌氧消化过程中氮磷释放形态研究 被引量:7

Effect of Temperature and pH on Release of Nitrogen and Phosphorus during Anaerobic Digestion of Phosphorus-rich Waste Activated Sludge
下载PDF
导出
摘要 通过静态厌氧消化试验,研究剩余污泥消化过程中pH与温度对氮磷释放形态的影响。结果表明,当pH=10.0时,消化过程中氮磷的释放程度均高于pH=5.0,在同等的pH情况下温度是氮磷释放的有利影响因素。温度对消化液中氮磷的存在形态影响较小,而pH则是影响氮磷形态的关键因素。pH=5.0时,NH4+-N是消化液中最主要的氮存在形态。当pH=10.0时,由于NH3的挥发作用,相当一部分氮从消化系统中损失,造成其NH4+-N低于pH=5.0。尽管在pH=10.0时比pH=5.0时有更多的磷释放,但pH=5.0时,消化系统中PO43--P的浓度却高于pH=10.0,其主要原因在于碱性条件下释放出的磷主要以聚合磷或其它结合磷为主。 Release of phosphorus and nitrogen during anaerobic digestion of phosphorus-rich waste activated sludge were evaluated with respect of the effect of temperature and pH value by operating 4 lab-scale anaerobic digesters. Just as the release of soluble chemical oxygen demand (SCOD) and solubilization of volatile suspend solids (VSS), the forms of nitrogen and phosphorus released were shown to be substantially dependent on pH value rather than temperature. NI-I4+-N was the most prevalent forms released at pH 5.0 conditions, Due to volatilization, the loss of nitrogen was the most prevalent forms at pH 10.0. Volatilization of NH4+-N at pH 10.0 can answer for why NH4+-N at pH 5.0 is higher than that at alkaline pH well. Although more phosphorus released at pH 10.0, the concentration of PO43--P at acidic pH was higher than that alkaline pH because most of the phosphorus released in supernatant at acidic pH existed in the forms of PO43--P.
出处 《环境科学与技术》 CAS CSCD 北大核心 2012年第9期139-142,共4页 Environmental Science & Technology
基金 上海市教委重点学科建设项目(J51502) 上海应用技术学院重点培育基金(KJ2011-07)
关键词 厌氧消化 富磷剩余污泥 氮磷 PH 温度 anaerobic digestion phosphorus-rich waste active sludge (PRWAS) nitrogen and phosphorus pH temperature
  • 相关文献

参考文献20

  • 1Bolzonella D,Pavan P,Zanette M,et al.Two-phaseanaerobic digestion of waste activated sludge:effect of anextreme thermophilic prefermentation[J].Indudtrial&Engi-neering Chemistry Research,2007,46(21):6650-6655.
  • 2Zupancic G D,Milenko R.Aerobic and two-stage anaero-bic-aerobic sludge digestion with pure oxygen and air aera-tion[J].Bioresource Technology,2008,99:100-109.
  • 3Tong J,Chen Y G.Enhanced biological phosphorus re-moval driven by short-chain fatty acids produced fromwaste activated sludge alkaline fermentation[J].Environmen-tal Science and Technology,2007,41(20):7126-7130.
  • 4Saktaywin W,Tsuno H,Nagare H,et al.Advanced sewagetreatment process with excess sludge reduction and phos-phorus recovery[J].Water Research,2005,39(5):902-910.
  • 5Jiang S,Chen Y G,Zhou Q,et al.Biological short-chainfatty acids(SCFAs)production from waste-activated sludgeaffected by surfactant[J].Water Research,2007,41(14):3112-3120.
  • 6Chen Y G,Jiang S,Yuan H Y,et al.Hydrolysis and acidi-fication of waste activated sludge at different pHs[J].WaterResearch,2007,41(3):683-689.
  • 7FENG Leiyu, YAN Yuanyuan, CHEN Yinguang State key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China..Kinetic analysis of waste activated sludge hydrolysis and short-chain fatty acids production at pH 10[J].Journal of Environmental Sciences,2009,21(5):589-594. 被引量:13
  • 8Yu G H,He P J,Shao L M,et al.Toward understandingthe mechanism of improving the production of volatile fattyacids from activated sludge at pH 10.0[J].Water Research,2008,42(18):4637-4644.
  • 9APHA(Ame rican Public Health Association).StandardMethods for the Examination of Water and Wastewater[M].20th ed.1998,Washington DC,USA.
  • 10张艳萍,彭永臻.剩余污泥高温好氧消化及其影响因素[J].环境科学与技术,2009,32(6):58-61. 被引量:4

二级参考文献53

  • 1付融冰,杨海真,甘明强.中国城市污水厂污泥处理现状及其进展[J].环境科学与技术,2004,27(5):108-110. 被引量:66
  • 2Chen Y G, Jiang S, Yuan H Y, Zhou Q, Gu G W, 2007. Hydrolysis and acidification of waste activated sludge at different pHs. Water Research, 41(3): 683-689.
  • 3Chen Y G, Randall A A, McCue T, 2004. The efficiency of enhanced biological phosphorus removal from real wastewater affected by different ratios of acetic to propionic acid. Water Research, 38(1): 27-36.
  • 4Ferreiro N, Soto M, 2003. Anaerobic hydrolysis of primary sludge: influence of sludge concentration and temperature. Water Science and Technology, 47( 12): 239-246.
  • 5GonCalvaes R F, Charlier A C, Sammut F, 1994. Primary fermentation of soluble and particulate organic matter for wastewater treatment. Water Science and Technology, 30(6): 53-52.
  • 6Hill C G, 1977. An Introduction to Chemical Engineering Kinetics & Reactor Design. New York: John Wiley & Sons., Inc. 481-485.
  • 7Jiang S, Chen Y, Zhou Q, Gu G W, 2007. Biological short-chain fatty acids (SCFAs) production from waste-activated sludge affected by surfactant. Water Research, 41(14): 3112-3120.
  • 8Lilley I D, Wentzel M C, Loewenthal R E, Marais G V, 1990. Acid fermentation of primary sludge at 20℃. Research Report W64. Department of Civil Engineering, University of Cape Town, Cape Town, RSA.
  • 9Mahmoud N, Zeeman G, Mizzen H, Lettinga G, 2004. Anaerobic stabilization and conversion of biopolymers in primary sludge-effect of temperature and sludge retention time. Water Research, 38(4): 983-991.
  • 10Miron Y, Zeeman G, van Lier J B, Lettinga G, 2000. The role of sludge retention time in the hydrolysis and acidification of lipids, carbohydrates and proteins during digestion of primary sludge in CSTR systems. Water Research, 34(5): 1705-1713.

共引文献72

同被引文献142

引证文献7

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部