期刊文献+

集成化服务链多目标全局优化模型与算法 被引量:1

Research on multi-objective global optimization model and algorithm of integrated service chain
下载PDF
导出
摘要 基于集成化服务链网络模型和候选服务资源评价指标,建立集成化服务链的多目标全局优化模型,并提出一种基于改进多目标遗传算法的集成化服务链多目标全局优化算法。算法采用基于距离的无参数种群多样性度量算子,在适应值分配、精英保持和选择操作中均进行了种群多样性控制,能在满足多约束条件下同时优化多个目标,得到一组满足决策者不同主观偏好的Pareto全局最优解集。仿真实验表明算法具有全局收敛性并具有较好的解的质量和分布,能有效求解集成化服务链多目标全局优化问题。 Based on the network model of integrated service chains and evaluation index of candidate service resources, optimizing integrated service chain can be formally defined as a multi-objective global optimization model with multiple constraints. We propose a multi-objective global optimization algorithm based on improved multi-objective genetic algorithms. The proposed algorithm uses a distance-based nonparametric population diversity measurement operator, and diversity control is involved in the process of adaptive value assignment, elitist maintaining and selection operation. The proposed algorithm can optimize multiple objectives at the same time on the premise of meeting the constraints, and finally get a constrained Pareto optimum solution set which satisfy decision makers' prefers. The simulation experiments indicate that the proposed algorithms can achieve global convergence and has better solution quality and distribution, which efficiently solve the problem of integrated service chain multi-objective global optimization.
出处 《重庆大学学报(自然科学版)》 EI CAS CSCD 北大核心 2012年第8期92-100,共9页 Journal of Chongqing University
基金 国家高技术研究发展计划(863计划)资助项目(2006AA04A123) 重庆市重大科技攻关计划资助项目(2010AA2044) 重庆市科技攻关计划资助项目(2010AC2071)
关键词 集成化服务链 多目标优化 全局优化 多目标遗传算法 integrated service chain multi-objective optimization global optimization genetic algorithms
  • 相关文献

参考文献15

  • 1Voudouris C, Owusu G, Dorne R, et al. Service chain management: technology innovation for the service business[M]. NewYork: Springer, 2008.
  • 2宋现锋,刘军志.QoS支持下的GIS服务链最优化问题研究[J].电子科技大学学报,2010,39(2):298-301. 被引量:7
  • 3Tao F, Zhao D M, Hu Y F, et al. Resource service composition and its optimal-selection based on particle swarm optimization in manufacturing grid system[J]. IEEE Transactions on Industrial Ini:ormatics, 2008, 4(4) : 315-327.
  • 4Liu L L, Shu Z S, Hu X M, et al. Resource allocation and network evolution considering economics and robustness in manufacturing grid[J]. The International Journal of Advanced Manufacturing Technology, 2011, 57(1-4) : 393-410.
  • 5王正成,潘晓弘,潘旭伟.基于蚁群算法的网络化制造资源服务链构建[J].计算机集成制造系统,2010,16(1):174-181. 被引量:18
  • 6余剑峰,李原,于海山,沈琴.基于自适应蚁群算法的协同制造项目资源优化配置[J].计算机集成制造系统,2008,14(3):576-580. 被引量:19
  • 7Konak A, Colt D W, Smith A E. Multi-objective optimization using genetic algorithms: a tutorial[J]. Reliability Engineering & System Safety, 2006, 91(9): 992-1007.
  • 8Dias'A H F, De vasconcelos J A. Multiohjective genetic algorithms applied to solve optimization problems[J]. IEEE Transactions on Magnetics, 2002, 38 ( 2 ): 1133-1136.
  • 9Hong Y Y, Wei S F. Multiobjective underfrequency load shedding in an autonomous system using hierarchical genetic algorithms[J]. IEEE Transactions on Power Delivery, 2010, 25(3) : 1355-1362.
  • 10Fonseca C M, Fleming P J. Genetic algorithms for multiobjective optimization: formulation, discussion and generalization [ C] // Proceedings of the Fifth International Conference on Genetic Algorithms, July 17-21, 1993, San Mateo, CA, USA. [S. 1.]: [S.n.], 1993 : 416-423.

二级参考文献50

共引文献54

同被引文献16

  • 1YU Yang, MA Hui, ZHANG Mengjie An adaptive genetic pro- gramming approach to QoS-aware Web services composition[C]// Proceedings of the 2013 IEEE Congress on Evolutionary Computa- tion. Washington,D. C. ,USA:IEEE,2013:1740-1747.
  • 2ZENG L, BENATALLAH B, NGU A H H, et al. QoS-a- ware middleware for Web services composition [J]. IEEE Transactions on Software Engineering, 2004,30 (5) : 311-327.
  • 3ZHANG Liangjie, LI Bing. Requirements driven dynamic services composition for Web services and grid solutions[J]. Journal of Grid Computing,2004,2(2) : 121-140.
  • 4CANFORA G, DI PENTA M, ESPOSITO R, et al. An ap- proach for QoS-aware service composition based on genetic al- gorithms[C]//Proeeedings of the 2005 Conference on Genetic and Evolutionary Computation. New York, N. Y. , USA: ACM, 2005 : 1069-1075.
  • 5ZHANG Chengwen, MA Yue. Genetic algorithm for QoS-a- ware Web service selection based on chaotic sequences[C]// Proceedings of the International Conference on Network- Based Information Systems, 2009. Washington, D. C. , USA, IEEE, 2009 ; 410-416.
  • 6ReinhardDiestel.图论[M].4版.北京:高等教育出版社,2013
  • 7ZHENG Huiyuan, ZHAO Weiliang, WANG Jian, et al. Qos a- nalysis for Web service compositions with complex structures[J]. IEEE Transactions on Service Computing, 2013,6 (3) : 373-386.
  • 8PAREJO J A, SEGURA S, FERNANDEZ P, et al. QoS-aware Web services composition using GRASP with path retinking[J]. Expert Systems with Applications, 2014,41 (9) : 4211-4223.
  • 9齐二石,李辉,刘亮.基于遗传算法的虚拟企业协同资源优化问题研究[J].中国管理科学,2011,19(1):77-83. 被引量:23
  • 10陶飞,张霖,郭华,罗永亮,任磊.云制造特征及云服务组合关键问题研究[J].计算机集成制造系统,2011,17(3):477-486. 被引量:212

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部