期刊文献+

Automatic mass segmentation on mammograms combining random walks and active contour 被引量:2

Automatic mass segmentation on mammograms combining random walks and active contour
原文传递
导出
摘要 Accurate mass segmentation on mammograms is a critical step in computer-aided diagnosis (CAD) systems. It is also a challenging task since some of the mass lesions are embedded in normal tissues and possess poor contrast or ambiguous margins. Besides, the shapes and densities of masses in mammograms are various. In this paper, a hybrid method combining a random walks algorithm and Chan-Vese (CV) active contour is proposed for automatic mass segmentation on mammograms. The data set used in this study consists of 1095 mass regions of interest (ROIs). First, the original ROI is preprocessed to suppress noise and surrounding tissues. Based on the preprocessed ROI, a set of seed points is generated for initial random walks segmentation. Afterward, an initial contour of mass and two probability matrices are produced by the initial random walks segmentation. These two probability matrices are used to modify the energy function of the CV model for prevention of contour leaking. Lastly, the final segmentation result is derived by the modified CV model, during which the probability matrices are updated by inserting several rounds of random walks. The proposed method is tested and compared with other four methods. The segmentation results are evaluated based on four evaluation metrics. Experimental results indicate that the proposed method produces more accurate mass segmentation results than the other four methods. Accurate mass segmentation on mammograms is a critical step in computer-aided diagnosis (CAD) systems. It is also a challenging task since some of the mass lesions are embedded in normal tissues and possess poor contrast or ambiguous margins. Besides, the shapes and densities of masses in mammograms are various. In this paper, a hybrid method combining a random walks algorithm and Chan-Vese (CV) active contour is proposed for automatic mass segmentation on mammograms. The data set used in this study consists of 1095 mass regions of interest (ROIs). First, the original ROI is preprocessed to suppress noise and surrounding tissues. Based on the preprocessed ROI, a set of seed points is generated for initial random walks segmentation. Afterward, an initial contour of mass and two probability matrices are produced by the initial random walks segmentation. These two probability matrices are used to modify the energy function of the CV model for prevention of contour leaking. Lastly, the final segmentation result is derived by the modified CV model, during which the probability matrices are updated by inserting several rounds of random walks. The proposed method is tested and compared with other four methods. The segmentation results are evaluated based on four evaluation metrics. Experimental results indicate that the proposed method produces more accurate mass segmentation results than the other four methods.
出处 《Journal of Zhejiang University-Science C(Computers and Electronics)》 SCIE EI 2012年第9期635-648,共14页 浙江大学学报C辑(计算机与电子(英文版)
基金 Project (Nos. 60772092 and 81101903) supported by the National Natural Science Foundation of China
  • 相关文献

参考文献1

二级参考文献1

共引文献1

同被引文献7

引证文献2

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部