摘要
针对三角模糊数直觉模糊信息下属性间存在关联使得已有集结算子失效的问题,引入模糊测度的概念,在三角直觉模糊数的运算法则基础上构建了基于关联的加权平均集成算子,即三角模糊数直觉模糊关联有序加权平均R-TIOWA算子、三角模糊数直觉模糊关联加权几何平均R-TIWGA算子和三角模糊数直觉模糊关联有序加权几何平均R-TIOWGA算子,探讨了上述算子的若干性质.并在此基础上构建一种属性值为三角模糊数直觉模糊数的多属性群决策方法.实例分析验证了该方法的可行性和有效性.
Under triangular fuzzy number intuitionistic information, interaction exists among the decision- making attributes which makes the aggregation operators to lose effectiveness. For these problems, the definition of fuzzy measure is introduced and some operational laws of triangular fuzzy number intuition- istic fuzzy numbers are defined, based on which some new aggregation operators with interaction are developed, such as triangular fuzzy number intuitionistic fuzzy ordered weighted average operation with interaction (R-TPIOWA), triangular fuzzy number intuitionistic fuzzy weighted geometric average oper- ation with interaction (R-TPIWGA) and triangular fuzzy number intuitionistic fuzzy ordered weighted geometric average operation with interaction (R-TPIOWGA). Finally, an approach for decision making with triangular fuzzy number intuitionistic fuzzy information is developed, and a practical example is provided to illustrate the developed approach and to verify its effectiveness.
出处
《系统工程理论与实践》
EI
CSSCI
CSCD
北大核心
2012年第9期1964-1972,共9页
Systems Engineering-Theory & Practice
基金
国家社会科学基金(10BTY031)
国家自然科学基金(70873058
71101070)
山东大学自主创新基金(2011CN024)
中国博士后面上基金(2012M511043)
关键词
三角模糊数直觉模糊集
运算法则
群决策
关联
three-point interval number intuitionistic fuzzy set
operational laws
group decision making
interaction